![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcco2nd | Structured version Visualization version GIF version |
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpcco1st.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpcco1st.b | ⊢ 𝐵 = (Base‘𝑇) |
xpcco1st.k | ⊢ 𝐾 = (Hom ‘𝑇) |
xpcco1st.o | ⊢ 𝑂 = (comp‘𝑇) |
xpcco1st.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
xpcco1st.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
xpcco1st.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
xpcco1st.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) |
xpcco1st.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) |
xpcco2nd.1 | ⊢ · = (comp‘𝐷) |
Ref | Expression |
---|---|
xpcco2nd | ⊢ (𝜑 → (2nd ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 · (2nd ‘𝑍))(2nd ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcco1st.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | xpcco1st.b | . . 3 ⊢ 𝐵 = (Base‘𝑇) | |
3 | xpcco1st.k | . . 3 ⊢ 𝐾 = (Hom ‘𝑇) | |
4 | eqid 2734 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
5 | xpcco2nd.1 | . . 3 ⊢ · = (comp‘𝐷) | |
6 | xpcco1st.o | . . 3 ⊢ 𝑂 = (comp‘𝑇) | |
7 | xpcco1st.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | xpcco1st.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | xpcco1st.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | xpcco1st.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) | |
11 | xpcco1st.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | xpcco 18247 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = 〈((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉(comp‘𝐶)(1st ‘𝑍))(1st ‘𝐹)), ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 · (2nd ‘𝑍))(2nd ‘𝐹))〉) |
13 | ovex 7478 | . . 3 ⊢ ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉(comp‘𝐶)(1st ‘𝑍))(1st ‘𝐹)) ∈ V | |
14 | ovex 7478 | . . 3 ⊢ ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 · (2nd ‘𝑍))(2nd ‘𝐹)) ∈ V | |
15 | 13, 14 | op2ndd 8037 | . 2 ⊢ ((𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = 〈((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉(comp‘𝐶)(1st ‘𝑍))(1st ‘𝐹)), ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 · (2nd ‘𝑍))(2nd ‘𝐹))〉 → (2nd ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 · (2nd ‘𝑍))(2nd ‘𝐹))) |
16 | 12, 15 | syl 17 | 1 ⊢ (𝜑 → (2nd ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 · (2nd ‘𝑍))(2nd ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 〈cop 4654 ‘cfv 6572 (class class class)co 7445 1st c1st 8024 2nd c2nd 8025 Basecbs 17253 Hom chom 17317 compcco 17318 ×c cxpc 18232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-9 12359 df-n0 12550 df-z 12636 df-dec 12755 df-uz 12900 df-fz 13564 df-struct 17189 df-slot 17224 df-ndx 17236 df-base 17254 df-hom 17330 df-cco 17331 df-xpc 18236 |
This theorem is referenced by: 2ndfcl 18262 |
Copyright terms: Public domain | W3C validator |