MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco2nd Structured version   Visualization version   GIF version

Theorem xpcco2nd 18249
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpcco1st.t 𝑇 = (𝐶 ×c 𝐷)
xpcco1st.b 𝐵 = (Base‘𝑇)
xpcco1st.k 𝐾 = (Hom ‘𝑇)
xpcco1st.o 𝑂 = (comp‘𝑇)
xpcco1st.x (𝜑𝑋𝐵)
xpcco1st.y (𝜑𝑌𝐵)
xpcco1st.z (𝜑𝑍𝐵)
xpcco1st.f (𝜑𝐹 ∈ (𝑋𝐾𝑌))
xpcco1st.g (𝜑𝐺 ∈ (𝑌𝐾𝑍))
xpcco2nd.1 · = (comp‘𝐷)
Assertion
Ref Expression
xpcco2nd (𝜑 → (2nd ‘(𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹)) = ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ · (2nd𝑍))(2nd𝐹)))

Proof of Theorem xpcco2nd
StepHypRef Expression
1 xpcco1st.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpcco1st.b . . 3 𝐵 = (Base‘𝑇)
3 xpcco1st.k . . 3 𝐾 = (Hom ‘𝑇)
4 eqid 2734 . . 3 (comp‘𝐶) = (comp‘𝐶)
5 xpcco2nd.1 . . 3 · = (comp‘𝐷)
6 xpcco1st.o . . 3 𝑂 = (comp‘𝑇)
7 xpcco1st.x . . 3 (𝜑𝑋𝐵)
8 xpcco1st.y . . 3 (𝜑𝑌𝐵)
9 xpcco1st.z . . 3 (𝜑𝑍𝐵)
10 xpcco1st.f . . 3 (𝜑𝐹 ∈ (𝑋𝐾𝑌))
11 xpcco1st.g . . 3 (𝜑𝐺 ∈ (𝑌𝐾𝑍))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11xpcco 18247 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ · (2nd𝑍))(2nd𝐹))⟩)
13 ovex 7478 . . 3 ((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝐹)) ∈ V
14 ovex 7478 . . 3 ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ · (2nd𝑍))(2nd𝐹)) ∈ V
1513, 14op2ndd 8037 . 2 ((𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ · (2nd𝑍))(2nd𝐹))⟩ → (2nd ‘(𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹)) = ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ · (2nd𝑍))(2nd𝐹)))
1612, 15syl 17 1 (𝜑 → (2nd ‘(𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹)) = ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ · (2nd𝑍))(2nd𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2103  cop 4654  cfv 6572  (class class class)co 7445  1st c1st 8024  2nd c2nd 8025  Basecbs 17253  Hom chom 17317  compcco 17318   ×c cxpc 18232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-z 12636  df-dec 12755  df-uz 12900  df-fz 13564  df-struct 17189  df-slot 17224  df-ndx 17236  df-base 17254  df-hom 17330  df-cco 17331  df-xpc 18236
This theorem is referenced by:  2ndfcl  18262
  Copyright terms: Public domain W3C validator