![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcco2nd | Structured version Visualization version GIF version |
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpcco1st.t | โข ๐ = (๐ถ รc ๐ท) |
xpcco1st.b | โข ๐ต = (Baseโ๐) |
xpcco1st.k | โข ๐พ = (Hom โ๐) |
xpcco1st.o | โข ๐ = (compโ๐) |
xpcco1st.x | โข (๐ โ ๐ โ ๐ต) |
xpcco1st.y | โข (๐ โ ๐ โ ๐ต) |
xpcco1st.z | โข (๐ โ ๐ โ ๐ต) |
xpcco1st.f | โข (๐ โ ๐น โ (๐๐พ๐)) |
xpcco1st.g | โข (๐ โ ๐บ โ (๐๐พ๐)) |
xpcco2nd.1 | โข ยท = (compโ๐ท) |
Ref | Expression |
---|---|
xpcco2nd | โข (๐ โ (2nd โ(๐บ(โจ๐, ๐โฉ๐๐)๐น)) = ((2nd โ๐บ)(โจ(2nd โ๐), (2nd โ๐)โฉ ยท (2nd โ๐))(2nd โ๐น))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcco1st.t | . . 3 โข ๐ = (๐ถ รc ๐ท) | |
2 | xpcco1st.b | . . 3 โข ๐ต = (Baseโ๐) | |
3 | xpcco1st.k | . . 3 โข ๐พ = (Hom โ๐) | |
4 | eqid 2732 | . . 3 โข (compโ๐ถ) = (compโ๐ถ) | |
5 | xpcco2nd.1 | . . 3 โข ยท = (compโ๐ท) | |
6 | xpcco1st.o | . . 3 โข ๐ = (compโ๐) | |
7 | xpcco1st.x | . . 3 โข (๐ โ ๐ โ ๐ต) | |
8 | xpcco1st.y | . . 3 โข (๐ โ ๐ โ ๐ต) | |
9 | xpcco1st.z | . . 3 โข (๐ โ ๐ โ ๐ต) | |
10 | xpcco1st.f | . . 3 โข (๐ โ ๐น โ (๐๐พ๐)) | |
11 | xpcco1st.g | . . 3 โข (๐ โ ๐บ โ (๐๐พ๐)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | xpcco 18131 | . 2 โข (๐ โ (๐บ(โจ๐, ๐โฉ๐๐)๐น) = โจ((1st โ๐บ)(โจ(1st โ๐), (1st โ๐)โฉ(compโ๐ถ)(1st โ๐))(1st โ๐น)), ((2nd โ๐บ)(โจ(2nd โ๐), (2nd โ๐)โฉ ยท (2nd โ๐))(2nd โ๐น))โฉ) |
13 | ovex 7438 | . . 3 โข ((1st โ๐บ)(โจ(1st โ๐), (1st โ๐)โฉ(compโ๐ถ)(1st โ๐))(1st โ๐น)) โ V | |
14 | ovex 7438 | . . 3 โข ((2nd โ๐บ)(โจ(2nd โ๐), (2nd โ๐)โฉ ยท (2nd โ๐))(2nd โ๐น)) โ V | |
15 | 13, 14 | op2ndd 7982 | . 2 โข ((๐บ(โจ๐, ๐โฉ๐๐)๐น) = โจ((1st โ๐บ)(โจ(1st โ๐), (1st โ๐)โฉ(compโ๐ถ)(1st โ๐))(1st โ๐น)), ((2nd โ๐บ)(โจ(2nd โ๐), (2nd โ๐)โฉ ยท (2nd โ๐))(2nd โ๐น))โฉ โ (2nd โ(๐บ(โจ๐, ๐โฉ๐๐)๐น)) = ((2nd โ๐บ)(โจ(2nd โ๐), (2nd โ๐)โฉ ยท (2nd โ๐))(2nd โ๐น))) |
16 | 12, 15 | syl 17 | 1 โข (๐ โ (2nd โ(๐บ(โจ๐, ๐โฉ๐๐)๐น)) = ((2nd โ๐บ)(โจ(2nd โ๐), (2nd โ๐)โฉ ยท (2nd โ๐))(2nd โ๐น))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โจcop 4633 โcfv 6540 (class class class)co 7405 1st c1st 7969 2nd c2nd 7970 Basecbs 17140 Hom chom 17204 compcco 17205 รc cxpc 18116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-hom 17217 df-cco 17218 df-xpc 18120 |
This theorem is referenced by: 2ndfcl 18146 |
Copyright terms: Public domain | W3C validator |