| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dec2dvds | GIF version | ||
| Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec2dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
| dec2dvds.2 | ⊢ 𝐵 ∈ ℕ0 |
| dec2dvds.3 | ⊢ (𝐵 · 2) = 𝐶 |
| dec2dvds.4 | ⊢ 𝐷 = (𝐶 + 1) |
| Ref | Expression |
|---|---|
| dec2dvds | ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 9286 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
| 2 | 1 | nn0zi 9365 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
| 3 | 2z 9371 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 4 | dvdsmul2 11996 | . . . . . . . 8 ⊢ ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2)) | |
| 5 | 2, 3, 4 | mp2an 426 | . . . . . . 7 ⊢ 2 ∥ (5 · 2) |
| 6 | 5t2e10 9573 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 7 | 5, 6 | breqtri 4059 | . . . . . 6 ⊢ 2 ∥ ;10 |
| 8 | 10nn0 9491 | . . . . . . . 8 ⊢ ;10 ∈ ℕ0 | |
| 9 | 8 | nn0zi 9365 | . . . . . . 7 ⊢ ;10 ∈ ℤ |
| 10 | dec2dvds.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 11 | 10 | nn0zi 9365 | . . . . . . 7 ⊢ 𝐴 ∈ ℤ |
| 12 | dvdsmultr1 12013 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ ;10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ ;10 → 2 ∥ (;10 · 𝐴))) | |
| 13 | 3, 9, 11, 12 | mp3an 1348 | . . . . . 6 ⊢ (2 ∥ ;10 → 2 ∥ (;10 · 𝐴)) |
| 14 | 7, 13 | ax-mp 5 | . . . . 5 ⊢ 2 ∥ (;10 · 𝐴) |
| 15 | dec2dvds.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0zi 9365 | . . . . . . 7 ⊢ 𝐵 ∈ ℤ |
| 17 | dvdsmul2 11996 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2)) | |
| 18 | 16, 3, 17 | mp2an 426 | . . . . . 6 ⊢ 2 ∥ (𝐵 · 2) |
| 19 | dec2dvds.3 | . . . . . 6 ⊢ (𝐵 · 2) = 𝐶 | |
| 20 | 18, 19 | breqtri 4059 | . . . . 5 ⊢ 2 ∥ 𝐶 |
| 21 | 8, 10 | nn0mulcli 9304 | . . . . . . 7 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 22 | 21 | nn0zi 9365 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℤ |
| 23 | 2nn0 9283 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 24 | 15, 23 | nn0mulcli 9304 | . . . . . . . 8 ⊢ (𝐵 · 2) ∈ ℕ0 |
| 25 | 19, 24 | eqeltrri 2270 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 |
| 26 | 25 | nn0zi 9365 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
| 27 | dvds2add 12007 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ (;10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶))) | |
| 28 | 3, 22, 26, 27 | mp3an 1348 | . . . . 5 ⊢ ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶)) |
| 29 | 14, 20, 28 | mp2an 426 | . . . 4 ⊢ 2 ∥ ((;10 · 𝐴) + 𝐶) |
| 30 | dfdec10 9477 | . . . 4 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 31 | 29, 30 | breqtrri 4061 | . . 3 ⊢ 2 ∥ ;𝐴𝐶 |
| 32 | 10, 25 | deccl 9488 | . . . . 5 ⊢ ;𝐴𝐶 ∈ ℕ0 |
| 33 | 32 | nn0zi 9365 | . . . 4 ⊢ ;𝐴𝐶 ∈ ℤ |
| 34 | 2nn 9169 | . . . 4 ⊢ 2 ∈ ℕ | |
| 35 | 1lt2 9177 | . . . 4 ⊢ 1 < 2 | |
| 36 | ndvdsp1 12114 | . . . 4 ⊢ ((;𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1))) | |
| 37 | 33, 34, 35, 36 | mp3an 1348 | . . 3 ⊢ (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1)) |
| 38 | 31, 37 | ax-mp 5 | . 2 ⊢ ¬ 2 ∥ (;𝐴𝐶 + 1) |
| 39 | dec2dvds.4 | . . . . 5 ⊢ 𝐷 = (𝐶 + 1) | |
| 40 | 39 | eqcomi 2200 | . . . 4 ⊢ (𝐶 + 1) = 𝐷 |
| 41 | eqid 2196 | . . . 4 ⊢ ;𝐴𝐶 = ;𝐴𝐶 | |
| 42 | 10, 25, 40, 41 | decsuc 9504 | . . 3 ⊢ (;𝐴𝐶 + 1) = ;𝐴𝐷 |
| 43 | 42 | breq2i 4042 | . 2 ⊢ (2 ∥ (;𝐴𝐶 + 1) ↔ 2 ∥ ;𝐴𝐷) |
| 44 | 38, 43 | mtbi 671 | 1 ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 0cc0 7896 1c1 7897 + caddc 7899 · cmul 7901 < clt 8078 ℕcn 9007 2c2 9058 5c5 9061 ℕ0cn0 9266 ℤcz 9343 ;cdc 9474 ∥ cdvds 11969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-q 9711 df-rp 9746 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-dvds 11970 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |