| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dec2dvds | GIF version | ||
| Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec2dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
| dec2dvds.2 | ⊢ 𝐵 ∈ ℕ0 |
| dec2dvds.3 | ⊢ (𝐵 · 2) = 𝐶 |
| dec2dvds.4 | ⊢ 𝐷 = (𝐶 + 1) |
| Ref | Expression |
|---|---|
| dec2dvds | ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 9357 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
| 2 | 1 | nn0zi 9436 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
| 3 | 2z 9442 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 4 | dvdsmul2 12291 | . . . . . . . 8 ⊢ ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2)) | |
| 5 | 2, 3, 4 | mp2an 426 | . . . . . . 7 ⊢ 2 ∥ (5 · 2) |
| 6 | 5t2e10 9645 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 7 | 5, 6 | breqtri 4087 | . . . . . 6 ⊢ 2 ∥ ;10 |
| 8 | 10nn0 9563 | . . . . . . . 8 ⊢ ;10 ∈ ℕ0 | |
| 9 | 8 | nn0zi 9436 | . . . . . . 7 ⊢ ;10 ∈ ℤ |
| 10 | dec2dvds.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 11 | 10 | nn0zi 9436 | . . . . . . 7 ⊢ 𝐴 ∈ ℤ |
| 12 | dvdsmultr1 12308 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ ;10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ ;10 → 2 ∥ (;10 · 𝐴))) | |
| 13 | 3, 9, 11, 12 | mp3an 1352 | . . . . . 6 ⊢ (2 ∥ ;10 → 2 ∥ (;10 · 𝐴)) |
| 14 | 7, 13 | ax-mp 5 | . . . . 5 ⊢ 2 ∥ (;10 · 𝐴) |
| 15 | dec2dvds.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0zi 9436 | . . . . . . 7 ⊢ 𝐵 ∈ ℤ |
| 17 | dvdsmul2 12291 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2)) | |
| 18 | 16, 3, 17 | mp2an 426 | . . . . . 6 ⊢ 2 ∥ (𝐵 · 2) |
| 19 | dec2dvds.3 | . . . . . 6 ⊢ (𝐵 · 2) = 𝐶 | |
| 20 | 18, 19 | breqtri 4087 | . . . . 5 ⊢ 2 ∥ 𝐶 |
| 21 | 8, 10 | nn0mulcli 9375 | . . . . . . 7 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 22 | 21 | nn0zi 9436 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℤ |
| 23 | 2nn0 9354 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 24 | 15, 23 | nn0mulcli 9375 | . . . . . . . 8 ⊢ (𝐵 · 2) ∈ ℕ0 |
| 25 | 19, 24 | eqeltrri 2283 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 |
| 26 | 25 | nn0zi 9436 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
| 27 | dvds2add 12302 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ (;10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶))) | |
| 28 | 3, 22, 26, 27 | mp3an 1352 | . . . . 5 ⊢ ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶)) |
| 29 | 14, 20, 28 | mp2an 426 | . . . 4 ⊢ 2 ∥ ((;10 · 𝐴) + 𝐶) |
| 30 | dfdec10 9549 | . . . 4 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 31 | 29, 30 | breqtrri 4089 | . . 3 ⊢ 2 ∥ ;𝐴𝐶 |
| 32 | 10, 25 | deccl 9560 | . . . . 5 ⊢ ;𝐴𝐶 ∈ ℕ0 |
| 33 | 32 | nn0zi 9436 | . . . 4 ⊢ ;𝐴𝐶 ∈ ℤ |
| 34 | 2nn 9240 | . . . 4 ⊢ 2 ∈ ℕ | |
| 35 | 1lt2 9248 | . . . 4 ⊢ 1 < 2 | |
| 36 | ndvdsp1 12409 | . . . 4 ⊢ ((;𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1))) | |
| 37 | 33, 34, 35, 36 | mp3an 1352 | . . 3 ⊢ (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1)) |
| 38 | 31, 37 | ax-mp 5 | . 2 ⊢ ¬ 2 ∥ (;𝐴𝐶 + 1) |
| 39 | dec2dvds.4 | . . . . 5 ⊢ 𝐷 = (𝐶 + 1) | |
| 40 | 39 | eqcomi 2213 | . . . 4 ⊢ (𝐶 + 1) = 𝐷 |
| 41 | eqid 2209 | . . . 4 ⊢ ;𝐴𝐶 = ;𝐴𝐶 | |
| 42 | 10, 25, 40, 41 | decsuc 9576 | . . 3 ⊢ (;𝐴𝐶 + 1) = ;𝐴𝐷 |
| 43 | 42 | breq2i 4070 | . 2 ⊢ (2 ∥ (;𝐴𝐶 + 1) ↔ 2 ∥ ;𝐴𝐷) |
| 44 | 38, 43 | mtbi 674 | 1 ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 < clt 8149 ℕcn 9078 2c2 9129 5c5 9132 ℕ0cn0 9337 ℤcz 9414 ;cdc 9546 ∥ cdvds 12264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-q 9783 df-rp 9818 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-dvds 12265 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |