Home | Intuitionistic Logic Explorer Theorem List (p. 118 of 133) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dvdssqim 11701 | Unidirectional form of dvdssq 11708. (Contributed by Scott Fenton, 19-Apr-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) | ||
Theorem | dvdsmulgcd 11702 | Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))) | ||
Theorem | rpmulgcd 11703 | If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁)) | ||
Theorem | rplpwr 11704 | If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd 𝐵) = 1)) | ||
Theorem | rppwr 11705 | If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵↑𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) | ||
Theorem | sqgcd 11706 | Square distributes over GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) | ||
Theorem | dvdssqlem 11707 | Lemma for dvdssq 11708. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) | ||
Theorem | dvdssq 11708 | Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) | ||
Theorem | bezoutr 11709 | Partial converse to bezout 11688. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌))) | ||
Theorem | bezoutr1 11710 | Converse of bezout 11688 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1)) | ||
Theorem | nn0seqcvgd 11711* | A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝜑 → 𝐹:ℕ_{0}⟶ℕ_{0}) & ⊢ (𝜑 → 𝑁 = (𝐹‘0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ_{0}) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) = 0) | ||
Theorem | ialgrlem1st 11712 | Lemma for ialgr0 11714. Expressing algrflemg 6120 in a form suitable for theorems such as seq3-1 10226 or seqf 10227. (Contributed by Jim Kingdon, 22-Jul-2021.) |
⊢ (𝜑 → 𝐹:𝑆⟶𝑆) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1^{st} )𝑦) ∈ 𝑆) | ||
Theorem | ialgrlemconst 11713 | Lemma for ialgr0 11714. Closure of a constant function, in a form suitable for theorems such as seq3-1 10226 or seqf 10227. (Contributed by Jim Kingdon, 22-Jul-2021.) |
⊢ 𝑍 = (ℤ_{≥}‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ_{≥}‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) | ||
Theorem | ialgr0 11714 | The value of the algorithm iterator 𝑅 at 0 is the initial state 𝐴. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
⊢ 𝑍 = (ℤ_{≥}‘𝑀) & ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1^{st} ), (𝑍 × {𝐴})) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) ⇒ ⊢ (𝜑 → (𝑅‘𝑀) = 𝐴) | ||
Theorem | algrf 11715 |
An algorithm is a step function 𝐹:𝑆⟶𝑆 on a state space 𝑆.
An algorithm acts on an initial state 𝐴 ∈ 𝑆 by iteratively applying
𝐹 to give 𝐴, (𝐹‘𝐴), (𝐹‘(𝐹‘𝐴)) and so
on. An algorithm is said to halt if a fixed point of 𝐹 is
reached
after a finite number of iterations.
The algorithm iterator 𝑅:ℕ_{0}⟶𝑆 "runs" the algorithm 𝐹 so that (𝑅‘𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴. Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
⊢ 𝑍 = (ℤ_{≥}‘𝑀) & ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1^{st} ), (𝑍 × {𝐴})) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) ⇒ ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) | ||
Theorem | algrp1 11716 | The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
⊢ 𝑍 = (ℤ_{≥}‘𝑀) & ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1^{st} ), (𝑍 × {𝐴})) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) | ||
Theorem | alginv 11717* | If 𝐼 is an invariant of 𝐹, then its value is unchanged after any number of iterations of 𝐹. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ 𝑅 = seq0((𝐹 ∘ 1^{st} ), (ℕ_{0} × {𝐴})) & ⊢ 𝐹:𝑆⟶𝑆 & ⊢ (𝑥 ∈ 𝑆 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘𝑥)) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐾 ∈ ℕ_{0}) → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0))) | ||
Theorem | algcvg 11718* |
One way to prove that an algorithm halts is to construct a countdown
function 𝐶:𝑆⟶ℕ_{0} whose
value is guaranteed to decrease for
each iteration of 𝐹 until it reaches 0. That is, if 𝑋 ∈ 𝑆
is not a fixed point of 𝐹, then
(𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋).
If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅‘𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐹:𝑆⟶𝑆 & ⊢ 𝑅 = seq0((𝐹 ∘ 1^{st} ), (ℕ_{0} × {𝐴})) & ⊢ 𝐶:𝑆⟶ℕ_{0} & ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) & ⊢ 𝑁 = (𝐶‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0) | ||
Theorem | algcvgblem 11719 | Lemma for algcvgb 11720. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ ((𝑀 ∈ ℕ_{0} ∧ 𝑁 ∈ ℕ_{0}) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)))) | ||
Theorem | algcvgb 11720 | Two ways of expressing that 𝐶 is a countdown function for algorithm 𝐹. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ 𝐹:𝑆⟶𝑆 & ⊢ 𝐶:𝑆⟶ℕ_{0} ⇒ ⊢ (𝑋 ∈ 𝑆 → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) | ||
Theorem | algcvga 11721* | The countdown function 𝐶 remains 0 after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐹:𝑆⟶𝑆 & ⊢ 𝑅 = seq0((𝐹 ∘ 1^{st} ), (ℕ_{0} × {𝐴})) & ⊢ 𝐶:𝑆⟶ℕ_{0} & ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) & ⊢ 𝑁 = (𝐶‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑆 → (𝐾 ∈ (ℤ_{≥}‘𝑁) → (𝐶‘(𝑅‘𝐾)) = 0)) | ||
Theorem | algfx 11722* | If 𝐹 reaches a fixed point when the countdown function 𝐶 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐹:𝑆⟶𝑆 & ⊢ 𝑅 = seq0((𝐹 ∘ 1^{st} ), (ℕ_{0} × {𝐴})) & ⊢ 𝐶:𝑆⟶ℕ_{0} & ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) & ⊢ 𝑁 = (𝐶‘𝐴) & ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘𝑧) = 0 → (𝐹‘𝑧) = 𝑧)) ⇒ ⊢ (𝐴 ∈ 𝑆 → (𝐾 ∈ (ℤ_{≥}‘𝑁) → (𝑅‘𝐾) = (𝑅‘𝑁))) | ||
Theorem | eucalgval2 11723* | The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
⊢ 𝐸 = (𝑥 ∈ ℕ_{0}, 𝑦 ∈ ℕ_{0} ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩)) ⇒ ⊢ ((𝑀 ∈ ℕ_{0} ∧ 𝑁 ∈ ℕ_{0}) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩)) | ||
Theorem | eucalgval 11724* |
Euclid's Algorithm eucalg 11729 computes the greatest common divisor of two
nonnegative integers by repeatedly replacing the larger of them with its
remainder modulo the smaller until the remainder is 0.
The value of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
⊢ 𝐸 = (𝑥 ∈ ℕ_{0}, 𝑦 ∈ ℕ_{0} ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩)) ⇒ ⊢ (𝑋 ∈ (ℕ_{0} × ℕ_{0}) → (𝐸‘𝑋) = if((2^{nd} ‘𝑋) = 0, 𝑋, ⟨(2^{nd} ‘𝑋), ( mod ‘𝑋)⟩)) | ||
Theorem | eucalgf 11725* | Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
⊢ 𝐸 = (𝑥 ∈ ℕ_{0}, 𝑦 ∈ ℕ_{0} ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩)) ⇒ ⊢ 𝐸:(ℕ_{0} × ℕ_{0})⟶(ℕ_{0} × ℕ_{0}) | ||
Theorem | eucalginv 11726* | The invariant of the step function 𝐸 for Euclid's Algorithm is the gcd operator applied to the state. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
⊢ 𝐸 = (𝑥 ∈ ℕ_{0}, 𝑦 ∈ ℕ_{0} ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩)) ⇒ ⊢ (𝑋 ∈ (ℕ_{0} × ℕ_{0}) → ( gcd ‘(𝐸‘𝑋)) = ( gcd ‘𝑋)) | ||
Theorem | eucalglt 11727* | The second member of the state decreases with each iteration of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
⊢ 𝐸 = (𝑥 ∈ ℕ_{0}, 𝑦 ∈ ℕ_{0} ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩)) ⇒ ⊢ (𝑋 ∈ (ℕ_{0} × ℕ_{0}) → ((2^{nd} ‘(𝐸‘𝑋)) ≠ 0 → (2^{nd} ‘(𝐸‘𝑋)) < (2^{nd} ‘𝑋))) | ||
Theorem | eucalgcvga 11728* | Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
⊢ 𝐸 = (𝑥 ∈ ℕ_{0}, 𝑦 ∈ ℕ_{0} ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩)) & ⊢ 𝑅 = seq0((𝐸 ∘ 1^{st} ), (ℕ_{0} × {𝐴})) & ⊢ 𝑁 = (2^{nd} ‘𝐴) ⇒ ⊢ (𝐴 ∈ (ℕ_{0} × ℕ_{0}) → (𝐾 ∈ (ℤ_{≥}‘𝑁) → (2^{nd} ‘(𝑅‘𝐾)) = 0)) | ||
Theorem | eucalg 11729* |
Euclid's Algorithm computes the greatest common divisor of two
nonnegative integers by repeatedly replacing the larger of them with its
remainder modulo the smaller until the remainder is 0. Theorem 1.15 in
[ApostolNT] p. 20.
Upon halting, the 1st member of the final state (𝑅‘𝑁) is equal to the gcd of the values comprising the input state ⟨𝑀, 𝑁⟩. This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by Mario Carneiro, 29-May-2014.) |
⊢ 𝐸 = (𝑥 ∈ ℕ_{0}, 𝑦 ∈ ℕ_{0} ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩)) & ⊢ 𝑅 = seq0((𝐸 ∘ 1^{st} ), (ℕ_{0} × {𝐴})) & ⊢ 𝐴 = ⟨𝑀, 𝑁⟩ ⇒ ⊢ ((𝑀 ∈ ℕ_{0} ∧ 𝑁 ∈ ℕ_{0}) → (1^{st} ‘(𝑅‘𝑁)) = (𝑀 gcd 𝑁)) | ||
According to Wikipedia ("Least common multiple", 27-Aug-2020, https://en.wikipedia.org/wiki/Least_common_multiple): "In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers a and b, usually denoted by lcm(a, b), is the smallest positive integer that is divisible by both a and b. Since division of integers by zero is undefined, this definition has meaning only if a and b are both different from zero. However, some authors define lcm(a,0) as 0 for all a, which is the result of taking the lcm to be the least upper bound in the lattice of divisibility." In this section, an operation calculating the least common multiple of two integers (df-lcm 11731). The definition is valid for all integers, including negative integers and 0, obeying the above mentioned convention. | ||
Syntax | clcm 11730 | Extend the definition of a class to include the least common multiple operator. |
class lcm | ||
Definition | df-lcm 11731* | Define the lcm operator. For example, (6 lcm 9) = 18. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) | ||
Theorem | lcmmndc 11732 | Decidablity lemma used in various proofs related to lcm. (Contributed by Jim Kingdon, 21-Jan-2022.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0)) | ||
Theorem | lcmval 11733* | Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 11625 and gcdval 11637. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) | ||
Theorem | lcmcom 11734 | The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀)) | ||
Theorem | lcm0val 11735 | The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 11734 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | ||
Theorem | lcmn0val 11736* | The value of the lcm operator when both operands are nonzero. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) | ||
Theorem | lcmcllem 11737* | Lemma for lcmn0cl 11738 and dvdslcm 11739. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) | ||
Theorem | lcmn0cl 11738 | Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ) | ||
Theorem | dvdslcm 11739 | The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) | ||
Theorem | lcmledvds 11740 | A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾)) | ||
Theorem | lcmeq0 11741 | The lcm of two integers is zero iff either is zero. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = 0 ↔ (𝑀 = 0 ∨ 𝑁 = 0))) | ||
Theorem | lcmcl 11742 | Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ_{0}) | ||
Theorem | gcddvdslcm 11743 | The greatest common divisor of two numbers divides their least common multiple. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ (𝑀 lcm 𝑁)) | ||
Theorem | lcmneg 11744 | Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁)) | ||
Theorem | neglcm 11745 | Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm 𝑁) = (𝑀 lcm 𝑁)) | ||
Theorem | lcmabs 11746 | The lcm of two integers is the same as that of their absolute values. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)) | ||
Theorem | lcmgcdlem 11747 | Lemma for lcmgcd 11748 and lcmdvds 11749. Prove them for positive 𝑀, 𝑁, and 𝐾. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)) ∧ ((𝐾 ∈ ℕ ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → (𝑀 lcm 𝑁) ∥ 𝐾))) | ||
Theorem | lcmgcd 11748 |
The product of two numbers' least common multiple and greatest common
divisor is the absolute value of the product of the two numbers. In
particular, that absolute value is the least common multiple of two
coprime numbers, for which (𝑀 gcd 𝑁) = 1.
Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic or of Bézout's identity bezout 11688; see e.g. https://proofwiki.org/wiki/Product_of_GCD_and_LCM 11688 and https://math.stackexchange.com/a/470827 11688. This proof uses the latter to first confirm it for positive integers 𝑀 and 𝑁 (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 11735 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | ||
Theorem | lcmdvds 11749 | The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)) | ||
Theorem | lcmid 11750 | The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) | ||
Theorem | lcm1 11751 | The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020.) |
⊢ (𝑀 ∈ ℤ → (𝑀 lcm 1) = (abs‘𝑀)) | ||
Theorem | lcmgcdnn 11752 | The product of two positive integers' least common multiple and greatest common divisor is the product of the two integers. (Contributed by AV, 27-Aug-2020.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)) | ||
Theorem | lcmgcdeq 11753 | Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁))) | ||
Theorem | lcmdvdsb 11754 | Biconditional form of lcmdvds 11749. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) ↔ (𝑀 lcm 𝑁) ∥ 𝐾)) | ||
Theorem | lcmass 11755 | Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃))) | ||
Theorem | 3lcm2e6woprm 11756 | The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.) |
⊢ (3 lcm 2) = 6 | ||
Theorem | 6lcm4e12 11757 | The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
⊢ (6 lcm 4) = ;12 | ||
According to Wikipedia "Coprime integers", see https://en.wikipedia.org/wiki/Coprime_integers (16-Aug-2020) "[...] two integers a and b are said to be relatively prime, mutually prime, or coprime [...] if the only positive integer (factor) that divides both of them is 1. Consequently, any prime number that divides one does not divide the other. This is equivalent to their greatest common divisor (gcd) being 1.". In the following, we use this equivalent characterization to say that 𝐴 ∈ ℤ and 𝐵 ∈ ℤ are coprime (or relatively prime) if (𝐴 gcd 𝐵) = 1. The equivalence of the definitions is shown by coprmgcdb 11758. The negation, i.e. two integers are not coprime, can be expressed either by (𝐴 gcd 𝐵) ≠ 1, see ncoprmgcdne1b 11759, or equivalently by 1 < (𝐴 gcd 𝐵), see ncoprmgcdgt1b 11760. A proof of Euclid's lemma based on coprimality is provided in coprmdvds 11762 (as opposed to Euclid's lemma for primes). | ||
Theorem | coprmgcdb 11758* | Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | ||
Theorem | ncoprmgcdne1b 11759* | Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ_{≥}‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) | ||
Theorem | ncoprmgcdgt1b 11760* | Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is greater than 1. (Contributed by AV, 9-Aug-2020.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ_{≥}‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ 1 < (𝐴 gcd 𝐵))) | ||
Theorem | coprmdvds1 11761 | If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.) |
⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1)) | ||
Theorem | coprmdvds 11762 | Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by AV, 10-Jul-2021.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾 ∥ 𝑁)) | ||
Theorem | coprmdvds2 11763 | If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 · 𝑁) ∥ 𝐾)) | ||
Theorem | mulgcddvds 11764 | One half of rpmulgcd2 11765, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))) | ||
Theorem | rpmulgcd2 11765 | If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))) | ||
Theorem | qredeq 11766 | Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃 ∧ 𝑁 = 𝑄)) | ||
Theorem | qredeu 11767* | Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.) |
⊢ (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1^{st} ‘𝑥) gcd (2^{nd} ‘𝑥)) = 1 ∧ 𝐴 = ((1^{st} ‘𝑥) / (2^{nd} ‘𝑥)))) | ||
Theorem | rpmul 11768 | If 𝐾 is relatively prime to 𝑀 and to 𝑁, it is also relatively prime to their product. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-Jul-2015.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑀) = 1 ∧ (𝐾 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = 1)) | ||
Theorem | rpdvds 11769 | If 𝐾 is relatively prime to 𝑁 then it is also relatively prime to any divisor 𝑀 of 𝑁. (Contributed by Mario Carneiro, 19-Jun-2015.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) = 1) | ||
Theorem | congr 11770* | Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory)): An integer 𝐴 is congruent to an integer 𝐵 modulo 𝑀 if their difference is a multiple of 𝑀. See also the definition in [ApostolNT] p. 104: "... 𝑎 is congruent to 𝑏 modulo 𝑚, and we write 𝑎≡𝑏 (mod 𝑚) if 𝑚 divides the difference 𝑎 − 𝑏", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence, 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = (𝐴 − 𝐵))) | ||
Theorem | divgcdcoprm0 11771 | Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1) | ||
Theorem | divgcdcoprmex 11772* | Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)) | ||
Theorem | cncongr1 11773 | One direction of the bicondition in cncongr 11775. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))) | ||
Theorem | cncongr2 11774 | The other direction of the bicondition in cncongr 11775. (Contributed by AV, 11-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | ||
Theorem | cncongr 11775 | Cancellability of Congruences (see ProofWiki "Cancellability of Congruences, https://proofwiki.org/wiki/Cancellability_of_Congruences, 10-Jul-2021): Two products with a common factor are congruent modulo a positive integer iff the other factors are congruent modulo the integer divided by the greates common divisor of the integer and the common factor. See also Theorem 5.4 "Cancellation law" in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑀) = (𝐵 mod 𝑀))) | ||
Theorem | cncongrcoprm 11776 | Corollary 1 of Cancellability of Congruences: Two products with a common factor are congruent modulo an integer being coprime to the common factor iff the other factors are congruent modulo the integer. (Contributed by AV, 13-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ (𝐶 gcd 𝑁) = 1)) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁))) | ||
Remark: to represent odd prime numbers, i.e., all prime numbers except 2, the idiom 𝑃 ∈ (ℙ ∖ {2}) is used. It is a little bit shorter than (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2). Both representations can be converted into each other by eldifsn 3645. | ||
Syntax | cprime 11777 | Extend the definition of a class to include the set of prime numbers. |
class ℙ | ||
Definition | df-prm 11778* | Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2_{o}} | ||
Theorem | isprm 11779* | The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2_{o})) | ||
Theorem | prmnn 11780 | A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | ||
Theorem | prmz 11781 | A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | ||
Theorem | prmssnn 11782 | The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
⊢ ℙ ⊆ ℕ | ||
Theorem | prmex 11783 | The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.) |
⊢ ℙ ∈ V | ||
Theorem | 1nprm 11784 | 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
⊢ ¬ 1 ∈ ℙ | ||
Theorem | 1idssfct 11785* | The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) | ||
Theorem | isprm2lem 11786* | Lemma for isprm2 11787. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2_{o} ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) | ||
Theorem | isprm2 11787* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ_{≥}‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | ||
Theorem | isprm3 11788* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ_{≥}‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧 ∥ 𝑃)) | ||
Theorem | isprm4 11789* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ_{≥}‘2) ∧ ∀𝑧 ∈ (ℤ_{≥}‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) | ||
Theorem | prmind2 11790* | A variation on prmind 11791 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ 𝜓 & ⊢ ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑) & ⊢ ((𝑦 ∈ (ℤ_{≥}‘2) ∧ 𝑧 ∈ (ℤ_{≥}‘2)) → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜂) | ||
Theorem | prmind 11791* | Perform induction over the multiplicative structure of ℕ. If a property 𝜑(𝑥) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ 𝜓 & ⊢ (𝑥 ∈ ℙ → 𝜑) & ⊢ ((𝑦 ∈ (ℤ_{≥}‘2) ∧ 𝑧 ∈ (ℤ_{≥}‘2)) → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜂) | ||
Theorem | dvdsprime 11792 | If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) | ||
Theorem | nprm 11793 | A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ ((𝐴 ∈ (ℤ_{≥}‘2) ∧ 𝐵 ∈ (ℤ_{≥}‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) | ||
Theorem | nprmi 11794 | An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ 1 < 𝐴 & ⊢ 1 < 𝐵 & ⊢ (𝐴 · 𝐵) = 𝑁 ⇒ ⊢ ¬ 𝑁 ∈ ℙ | ||
Theorem | dvdsnprmd 11795 | If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.) |
⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐴 < 𝑁) & ⊢ (𝜑 → 𝐴 ∥ 𝑁) ⇒ ⊢ (𝜑 → ¬ 𝑁 ∈ ℙ) | ||
Theorem | prm2orodd 11796 | A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021.) |
⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃)) | ||
Theorem | 2prm 11797 | 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
⊢ 2 ∈ ℙ | ||
Theorem | 3prm 11798 | 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 3 ∈ ℙ | ||
Theorem | 4nprm 11799 | 4 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 4 ∈ ℙ | ||
Theorem | prmuz2 11800 | A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ_{≥}‘2)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |