Theorem List for Intuitionistic Logic Explorer - 11701-11800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | zmaxcl 11701 |
The maximum of two integers is an integer. (Contributed by Jim Kingdon,
27-Sep-2022.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) ∈
ℤ) |
| |
| Theorem | nn0maxcl 11702 |
The maximum of two nonnegative integers is a nonnegative integer.
(Contributed by Jim Kingdon, 28-Oct-2025.)
|
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ sup({𝐴, 𝐵}, ℝ, < ) ∈
ℕ0) |
| |
| Theorem | 2zsupmax 11703 |
Two ways to express the maximum of two integers. Because order of
integers is decidable, we have more flexibility than for real numbers.
(Contributed by Jim Kingdon, 22-Jan-2023.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| |
| Theorem | fimaxre2 11704* |
A nonempty finite set of real numbers has an upper bound. (Contributed
by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro,
13-Feb-2014.)
|
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| |
| Theorem | negfi 11705* |
The negation of a finite set of real numbers is finite. (Contributed by
AV, 9-Aug-2020.)
|
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin) |
| |
| 4.8.6 The minimum of two real
numbers
|
| |
| Theorem | mincom 11706 |
The minimum of two reals is commutative. (Contributed by Jim Kingdon,
8-Feb-2021.)
|
| ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) |
| |
| Theorem | minmax 11707 |
Minimum expressed in terms of maximum. (Contributed by Jim Kingdon,
8-Feb-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) |
| |
| Theorem | mincl 11708 |
The minumum of two real numbers is a real number. (Contributed by Jim
Kingdon, 25-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
| |
| Theorem | min1inf 11709 |
The minimum of two numbers is less than or equal to the first.
(Contributed by Jim Kingdon, 8-Feb-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐴) |
| |
| Theorem | min2inf 11710 |
The minimum of two numbers is less than or equal to the second.
(Contributed by Jim Kingdon, 9-Feb-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐵) |
| |
| Theorem | lemininf 11711 |
Two ways of saying a number is less than or equal to the minimum of two
others. (Contributed by NM, 3-Aug-2007.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
| |
| Theorem | ltmininf 11712 |
Two ways of saying a number is less than the minimum of two others.
(Contributed by Jim Kingdon, 10-Feb-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
| |
| Theorem | minabs 11713 |
The minimum of two real numbers in terms of absolute value. (Contributed
by Jim Kingdon, 15-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
| |
| Theorem | minclpr 11714 |
The minimum of two real numbers is one of those numbers if and only if
dichotomy (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) holds. For example, this can be
combined with zletric 9458 if one is dealing with integers, but real
number
dichotomy in general does not follow from our axioms. (Contributed by Jim
Kingdon, 23-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴))) |
| |
| Theorem | rpmincl 11715 |
The minumum of two positive real numbers is a positive real number.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)
→ inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ+) |
| |
| Theorem | bdtrilem 11716 |
Lemma for bdtri 11717. (Contributed by Steven Nguyen and Jim
Kingdon,
17-May-2023.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))) |
| |
| Theorem | bdtri 11717 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < ))) |
| |
| Theorem | mul0inf 11718 |
Equality of a product with zero. A bit of a curiosity, in the sense that
theorems like abs00ap 11539 and mulap0bd 8772 may better express the ideas behind
it. (Contributed by Jim Kingdon, 31-Jul-2023.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0)) |
| |
| Theorem | mingeb 11719 |
Equivalence of ≤ and being equal to the minimum of
two reals.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
| |
| Theorem | 2zinfmin 11720 |
Two ways to express the minimum of two integers. Because order of
integers is decidable, we have more flexibility than for real numbers.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
| |
| 4.8.7 The maximum of two extended
reals
|
| |
| Theorem | xrmaxleim 11721 |
Value of maximum when we know which extended real is larger.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)) |
| |
| Theorem | xrmaxiflemcl 11722 |
Lemma for xrmaxif 11728. Closure. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ if(𝐵 = +∞,
+∞, if(𝐵 = -∞,
𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈
ℝ*) |
| |
| Theorem | xrmaxifle 11723 |
An upper bound for {𝐴, 𝐵} in the extended reals.
(Contributed by
Jim Kingdon, 26-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
| |
| Theorem | xrmaxiflemab 11724 |
Lemma for xrmaxif 11728. A variation of xrmaxleim 11721- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 26-Apr-2023.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵) |
| |
| Theorem | xrmaxiflemlub 11725 |
Lemma for xrmaxif 11728. A least upper bound for {𝐴, 𝐵}.
(Contributed by Jim Kingdon, 28-Apr-2023.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, <
)))))) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
| |
| Theorem | xrmaxiflemcom 11726 |
Lemma for xrmaxif 11728. Commutativity of an expression which we
will
later show to be the supremum. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ if(𝐵 = +∞,
+∞, if(𝐵 = -∞,
𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
| |
| Theorem | xrmaxiflemval 11727* |
Lemma for xrmaxif 11728. Value of the supremum. (Contributed by
Jim
Kingdon, 29-Apr-2023.)
|
| ⊢ 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, <
))))) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝑀 ∈
ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |
| |
| Theorem | xrmaxif 11728 |
Maximum of two extended reals in terms of if
expressions.
(Contributed by Jim Kingdon, 26-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ sup({𝐴, 𝐵}, ℝ*, < )
= if(𝐵 = +∞,
+∞, if(𝐵 = -∞,
𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
| |
| Theorem | xrmaxcl 11729 |
The maximum of two extended reals is an extended real. (Contributed by
Jim Kingdon, 29-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ sup({𝐴, 𝐵}, ℝ*, < )
∈ ℝ*) |
| |
| Theorem | xrmax1sup 11730 |
An extended real is less than or equal to the maximum of it and another.
(Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
30-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, <
)) |
| |
| Theorem | xrmax2sup 11731 |
An extended real is less than or equal to the maximum of it and another.
(Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
30-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, <
)) |
| |
| Theorem | xrmaxrecl 11732 |
The maximum of two real numbers is the same when taken as extended reals
or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < )) |
| |
| Theorem | xrmaxleastlt 11733 |
The maximum as a least upper bound, in terms of less than. (Contributed
by Jim Kingdon, 9-Feb-2022.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐶 ∈
ℝ* ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ*, < ))) →
(𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
| |
| Theorem | xrltmaxsup 11734 |
The maximum as a least upper bound. (Contributed by Jim Kingdon,
10-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐶 < sup({𝐴, 𝐵}, ℝ*, < ) ↔
(𝐶 < 𝐴 ∨ 𝐶 < 𝐵))) |
| |
| Theorem | xrmaxltsup 11735 |
Two ways of saying the maximum of two numbers is less than a third.
(Contributed by Jim Kingdon, 30-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) |
| |
| Theorem | xrmaxlesup 11736 |
Two ways of saying the maximum of two numbers is less than or equal to a
third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim
Kingdon, 10-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
| |
| Theorem | xrmaxaddlem 11737 |
Lemma for xrmaxadd 11738. The case where 𝐴 is real. (Contributed
by
Jim Kingdon, 11-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)
→ sup({(𝐴
+𝑒 𝐵),
(𝐴 +𝑒
𝐶)}, ℝ*,
< ) = (𝐴
+𝑒 sup({𝐵, 𝐶}, ℝ*, <
))) |
| |
| Theorem | xrmaxadd 11738 |
Distributing addition over maximum. (Contributed by Jim Kingdon,
11-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒
sup({𝐵, 𝐶}, ℝ*, <
))) |
| |
| 4.8.8 The minimum of two extended
reals
|
| |
| Theorem | xrnegiso 11739 |
Negation is an order anti-isomorphism of the extended reals, which is
its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
|
| ⊢ 𝐹 = (𝑥 ∈ ℝ* ↦
-𝑒𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ*,
ℝ*) ∧ ◡𝐹 = 𝐹) |
| |
| Theorem | infxrnegsupex 11740* |
The infimum of a set of extended reals 𝐴 is the negative of the
supremum of the negatives of its elements. (Contributed by Jim Kingdon,
2-May-2023.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆
ℝ*) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧 ∈ ℝ* ∣
-𝑒𝑧
∈ 𝐴},
ℝ*, < )) |
| |
| Theorem | xrnegcon1d 11741 |
Contraposition law for extended real unary minus. (Contributed by Jim
Kingdon, 2-May-2023.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈
ℝ*) ⇒ ⊢ (𝜑 → (-𝑒𝐴 = 𝐵 ↔ -𝑒𝐵 = 𝐴)) |
| |
| Theorem | xrminmax 11742 |
Minimum expressed in terms of maximum. (Contributed by Jim Kingdon,
2-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ inf({𝐴, 𝐵}, ℝ*, < )
= -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, <
)) |
| |
| Theorem | xrmincl 11743 |
The minumum of two extended reals is an extended real. (Contributed by
Jim Kingdon, 3-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ inf({𝐴, 𝐵}, ℝ*, < )
∈ ℝ*) |
| |
| Theorem | xrmin1inf 11744 |
The minimum of two extended reals is less than or equal to the first.
(Contributed by Jim Kingdon, 3-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ inf({𝐴, 𝐵}, ℝ*, < )
≤ 𝐴) |
| |
| Theorem | xrmin2inf 11745 |
The minimum of two extended reals is less than or equal to the second.
(Contributed by Jim Kingdon, 3-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ inf({𝐴, 𝐵}, ℝ*, < )
≤ 𝐵) |
| |
| Theorem | xrmineqinf 11746 |
The minimum of two extended reals is equal to the second if the first is
bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim
Kingdon, 3-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐵 ≤ 𝐴) → inf({𝐴, 𝐵}, ℝ*, < ) = 𝐵) |
| |
| Theorem | xrltmininf 11747 |
Two ways of saying an extended real is less than the minimum of two
others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
3-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐴 < inf({𝐵, 𝐶}, ℝ*, < ) ↔
(𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
| |
| Theorem | xrlemininf 11748 |
Two ways of saying a number is less than or equal to the minimum of two
others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim
Kingdon, 4-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔
(𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
| |
| Theorem | xrminltinf 11749 |
Two ways of saying an extended real is greater than the minimum of two
others. (Contributed by Jim Kingdon, 19-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐴))) |
| |
| Theorem | xrminrecl 11750 |
The minimum of two real numbers is the same when taken as extended reals
or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < )) |
| |
| Theorem | xrminrpcl 11751 |
The minimum of two positive reals is a positive real. (Contributed by Jim
Kingdon, 4-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)
→ inf({𝐴, 𝐵}, ℝ*, < )
∈ ℝ+) |
| |
| Theorem | xrminadd 11752 |
Distributing addition over minimum. (Contributed by Jim Kingdon,
10-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒
inf({𝐵, 𝐶}, ℝ*, <
))) |
| |
| Theorem | xrbdtri 11753 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ*
∧ 0 ≤ 𝐵) ∧
(𝐶 ∈
ℝ* ∧ 0 < 𝐶)) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤
(inf({𝐴, 𝐶}, ℝ*, < )
+𝑒 inf({𝐵, 𝐶}, ℝ*, <
))) |
| |
| Theorem | iooinsup 11754 |
Intersection of two open intervals of extended reals. (Contributed by
NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐶 ∈
ℝ* ∧ 𝐷 ∈ ℝ*)) →
((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, <
))) |
| |
| 4.9 Elementary limits and
convergence
|
| |
| 4.9.1 Limits
|
| |
| Syntax | cli 11755 |
Extend class notation with convergence relation for limits.
|
| class ⇝ |
| |
| Definition | df-clim 11756* |
Define the limit relation for complex number sequences. See clim 11758
for
its relational expression. (Contributed by NM, 28-Aug-2005.)
|
| ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
| |
| Theorem | climrel 11757 |
The limit relation is a relation. (Contributed by NM, 28-Aug-2005.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ Rel ⇝ |
| |
| Theorem | clim 11758* |
Express the predicate: The limit of complex number sequence 𝐹 is
𝐴, or 𝐹 converges to 𝐴. This
means that for any real
𝑥, no matter how small, there always
exists an integer 𝑗 such
that the absolute difference of any later complex number in the sequence
and the limit is less than 𝑥. (Contributed by NM, 28-Aug-2005.)
(Revised by Mario Carneiro, 28-Apr-2015.)
|
| ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
| |
| Theorem | climcl 11759 |
Closure of the limit of a sequence of complex numbers. (Contributed by
NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
|
| ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| |
| Theorem | clim2 11760* |
Express the predicate: The limit of complex number sequence 𝐹 is
𝐴, or 𝐹 converges to 𝐴, with
more general quantifier
restrictions than clim 11758. (Contributed by NM, 6-Jan-2007.) (Revised
by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
| |
| Theorem | clim2c 11761* |
Express the predicate 𝐹 converges to 𝐴. (Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) |
| |
| Theorem | clim0 11762* |
Express the predicate 𝐹 converges to 0. (Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘𝐵) < 𝑥))) |
| |
| Theorem | clim0c 11763* |
Express the predicate 𝐹 converges to 0. (Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
| |
| Theorem | climi 11764* |
Convergence of a sequence of complex numbers. (Contributed by NM,
11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶)) |
| |
| Theorem | climi2 11765* |
Convergence of a sequence of complex numbers. (Contributed by NM,
11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
| |
| Theorem | climi0 11766* |
Convergence of a sequence of complex numbers to zero. (Contributed by
NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → 𝐹 ⇝ 0) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
| |
| Theorem | climconst 11767* |
An (eventually) constant sequence converges to its value. (Contributed
by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| |
| Theorem | climconst2 11768 |
A constant sequence converges to its value. (Contributed by NM,
6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ (ℤ≥‘𝑀) ⊆ 𝑍
& ⊢ 𝑍 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴) |
| |
| Theorem | climz 11769 |
The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ (ℤ × {0}) ⇝
0 |
| |
| Theorem | climuni 11770 |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro,
31-Jan-2014.)
|
| ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵) → 𝐴 = 𝐵) |
| |
| Theorem | fclim 11771 |
The limit relation is function-like, and with codomian the complex
numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ ⇝ :dom ⇝
⟶ℂ |
| |
| Theorem | climdm 11772 |
Two ways to express that a function has a limit. (The expression
( ⇝ ‘𝐹) is sometimes useful as a shorthand
for "the unique limit
of the function 𝐹"). (Contributed by Mario
Carneiro,
18-Mar-2014.)
|
| ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) |
| |
| Theorem | climeu 11773* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 25-Dec-2005.)
|
| ⊢ (𝐹 ⇝ 𝐴 → ∃!𝑥 𝐹 ⇝ 𝑥) |
| |
| Theorem | climreu 11774* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 25-Dec-2005.)
|
| ⊢ (𝐹 ⇝ 𝐴 → ∃!𝑥 ∈ ℂ 𝐹 ⇝ 𝑥) |
| |
| Theorem | climmo 11775* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by Mario Carneiro, 13-Jul-2013.)
|
| ⊢ ∃*𝑥 𝐹 ⇝ 𝑥 |
| |
| Theorem | climeq 11776* |
Two functions that are eventually equal to one another have the same
limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario
Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| |
| Theorem | climmpt 11777* |
Exhibit a function 𝐺 with the same convergence properties
as the
not-quite-function 𝐹. (Contributed by Mario Carneiro,
31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| |
| Theorem | 2clim 11778* |
If two sequences converge to each other, they converge to the same
limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario
Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑥)
& ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
| |
| Theorem | climshftlemg 11779 |
A shifted function converges if the original function converges.
(Contributed by Mario Carneiro, 5-Nov-2013.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴)) |
| |
| Theorem | climres 11780 |
A function restricted to upper integers converges iff the original
function converges. (Contributed by Mario Carneiro, 13-Jul-2013.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾
(ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| |
| Theorem | climshft 11781 |
A shifted function converges iff the original function converges.
(Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro,
31-Jan-2014.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| |
| Theorem | serclim0 11782 |
The zero series converges to zero. (Contributed by Paul Chapman,
9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ≥‘𝑀) × {0})) ⇝
0) |
| |
| Theorem | climshft2 11783* |
A shifted function converges iff the original function converges.
(Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario
Carneiro, 6-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑊)
& ⊢ (𝜑 → 𝐺 ∈ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| |
| Theorem | climabs0 11784* |
Convergence to zero of the absolute value is equivalent to convergence
to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro,
31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0)) |
| |
| Theorem | climcn1 11785* |
Image of a limit under a continuous map. (Contributed by Mario
Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐵 ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐹‘𝐴)) |
| |
| Theorem | climcn2 11786* |
Image of a limit under a continuous map, two-arg version. (Contributed
by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝐶)
& ⊢ (𝜑 → 𝐵 ∈ 𝐷)
& ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐶 ∧ 𝑣 ∈ 𝐷)) → (𝑢𝐹𝑣) ∈ ℂ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ⇝ 𝐵)
& ⊢ (𝜑 → 𝐾 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ 𝐶 ∀𝑣 ∈ 𝐷 (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐶)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) ∈ 𝐷)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾‘𝑘) = ((𝐺‘𝑘)𝐹(𝐻‘𝑘))) ⇒ ⊢ (𝜑 → 𝐾 ⇝ (𝐴𝐹𝐵)) |
| |
| Theorem | addcn2 11787* |
Complex number addition is a continuous function. Part of Proposition
14-4.16 of [Gleason] p. 243. (We write
out the definition directly
because df-cn and df-cncf are not yet available to us. See addcncntop 15201
for the abbreviated version.) (Contributed by Mario Carneiro,
31-Jan-2014.)
|
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)) |
| |
| Theorem | subcn2 11788* |
Complex number subtraction is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
Carneiro, 31-Jan-2014.)
|
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 − 𝑣) − (𝐵 − 𝐶))) < 𝐴)) |
| |
| Theorem | mulcn2 11789* |
Complex number multiplication is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
Carneiro, 31-Jan-2014.)
|
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)) |
| |
| Theorem | reccn2ap 11790* |
The reciprocal function is continuous. The class 𝑇 is just for
convenience in writing the proof and typically would be passed in as an
instance of eqid 2209. (Contributed by Mario Carneiro,
9-Feb-2014.)
Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
|
| ⊢ 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ·
((abs‘𝐴) /
2)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) |
| |
| Theorem | cn1lem 11791* |
A sufficient condition for a function to be continuous. (Contributed by
Mario Carneiro, 9-Feb-2014.)
|
| ⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) →
(abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
| |
| Theorem | abscn2 11792* |
The absolute value function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐴))) < 𝑥)) |
| |
| Theorem | cjcn2 11793* |
The complex conjugate function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥)) |
| |
| Theorem | recn2 11794* |
The real part function is continuous. (Contributed by Mario Carneiro,
9-Feb-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥)) |
| |
| Theorem | imcn2 11795* |
The imaginary part function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥)) |
| |
| Theorem | climcn1lem 11796* |
The limit of a continuous function, theorem form. (Contributed by
Mario Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ 𝐻:ℂ⟶ℂ & ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
| |
| Theorem | climabs 11797* |
Limit of the absolute value of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (abs‘𝐴)) |
| |
| Theorem | climcj 11798* |
Limit of the complex conjugate of a sequence. Proposition 12-2.4(c)
of [Gleason] p. 172. (Contributed by
NM, 7-Jun-2006.) (Revised by
Mario Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (∗‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (∗‘𝐴)) |
| |
| Theorem | climre 11799* |
Limit of the real part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℜ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℜ‘𝐴)) |
| |
| Theorem | climim 11800* |
Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℑ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℑ‘𝐴)) |