Home | Intuitionistic Logic Explorer Theorem List (p. 118 of 142) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tanaddaplem 11701 | A useful intermediate step in tanaddap 11702 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1)) | ||
Theorem | tanaddap 11702 | Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0 ∧ (cos‘(𝐴 + 𝐵)) # 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) | ||
Theorem | sinsub 11703 | Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) | ||
Theorem | cossub 11704 | Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | ||
Theorem | addsin 11705 | Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | subsin 11706 | Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | sinmul 11707 | Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 11700 and cossub 11704. (Contributed by David A. Wheeler, 26-May-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) | ||
Theorem | cosmul 11708 | Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 11700 and cossub 11704. (Contributed by David A. Wheeler, 26-May-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) | ||
Theorem | addcos 11709 | Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | subcos 11710 | Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | sincossq 11711 | Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | ||
Theorem | sin2t 11712 | Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) | ||
Theorem | cos2t 11713 | Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | ||
Theorem | cos2tsin 11714 | Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) | ||
Theorem | sinbnd 11715 | The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | ||
Theorem | cosbnd 11716 | The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) | ||
Theorem | sinbnd2 11717 | The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ (-1[,]1)) | ||
Theorem | cosbnd2 11718 | The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ (-1[,]1)) | ||
Theorem | ef01bndlem 11719* | Lemma for sin01bnd 11720 and cos01bnd 11721. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)) < ((𝐴↑4) / 6)) | ||
Theorem | sin01bnd 11720 | Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | ||
Theorem | cos01bnd 11721 | Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))) | ||
Theorem | cos1bnd 11722 | Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) | ||
Theorem | cos2bnd 11723 | Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9)) | ||
Theorem | sin01gt0 11724 | The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.) |
⊢ (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴)) | ||
Theorem | cos01gt0 11725 | The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴)) | ||
Theorem | sin02gt0 11726 | The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴)) | ||
Theorem | sincos1sgn 11727 | The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (0 < (sin‘1) ∧ 0 < (cos‘1)) | ||
Theorem | sincos2sgn 11728 | The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | ||
Theorem | sin4lt0 11729 | The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (sin‘4) < 0 | ||
Theorem | cos12dec 11730 | Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.) |
⊢ ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴)) | ||
Theorem | absefi 11731 | The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.) |
⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) | ||
Theorem | absef 11732 | The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.) |
⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) | ||
Theorem | absefib 11733 | A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1)) | ||
Theorem | efieq1re 11734 | A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ) | ||
Theorem | demoivre 11735 | De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 11736 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
Theorem | demoivreALT 11736 | Alternate proof of demoivre 11735. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
Syntax | ctau 11737 | Extend class notation to include the constant tau, τ = 6.28318.... |
class τ | ||
Definition | df-tau 11738 | Define the circle constant tau, τ = 6.28318..., which is the smallest positive real number whose cosine is one. Various notations have been used or proposed for this number including τ, a three-legged variant of π, or 2π. Note the difference between this constant τ and the formula variable 𝜏. Following our convention, the constant is displayed in upright font while the variable is in italic font; furthermore, the colors are different. (Contributed by Jim Kingdon, 9-Apr-2018.) (Revised by AV, 1-Oct-2020.) |
⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | ||
Theorem | eirraplem 11739* | Lemma for eirrap 11740. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℕ) ⇒ ⊢ (𝜑 → e # (𝑃 / 𝑄)) | ||
Theorem | eirrap 11740 | e is irrational. That is, for any rational number, e is apart from it. In the absence of excluded middle, we can distinguish between this and saying that e is not rational, which is eirr 11741. (Contributed by Jim Kingdon, 6-Jan-2023.) |
⊢ (𝑄 ∈ ℚ → e # 𝑄) | ||
Theorem | eirr 11741 | e is not rational. In the absence of excluded middle, we can distinguish between this and saying that e is irrational in the sense of being apart from any rational number, which is eirrap 11740. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 6-Jan-2023.) |
⊢ e ∉ ℚ | ||
Theorem | egt2lt3 11742 | Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.) |
⊢ (2 < e ∧ e < 3) | ||
Theorem | epos 11743 | Euler's constant e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.) |
⊢ 0 < e | ||
Theorem | epr 11744 | Euler's constant e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.) |
⊢ e ∈ ℝ+ | ||
Theorem | ene0 11745 | e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.) |
⊢ e ≠ 0 | ||
Theorem | eap0 11746 | e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.) |
⊢ e # 0 | ||
Theorem | ene1 11747 | e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.) |
⊢ e ≠ 1 | ||
Theorem | eap1 11748 | e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.) |
⊢ e # 1 | ||
This part introduces elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory. | ||
Syntax | cdvds 11749 | Extend the definition of a class to include the divides relation. See df-dvds 11750. |
class ∥ | ||
Definition | df-dvds 11750* | Define the divides relation, see definition in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} | ||
Theorem | divides 11751* | Define the divides relation. 𝑀 ∥ 𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 13765). As proven in dvdsval3 11753, 𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 11751 and dvdsval2 11752 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) | ||
Theorem | dvdsval2 11752 | One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | ||
Theorem | dvdsval3 11753 | One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0)) | ||
Theorem | dvdszrcl 11754 | Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) | ||
Theorem | dvdsmod0 11755 | If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁) → (𝑁 mod 𝑀) = 0) | ||
Theorem | p1modz1 11756 | If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.) |
⊢ ((𝑀 ∥ 𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1) | ||
Theorem | dvdsmodexp 11757 | If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 12188). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) | ||
Theorem | nndivdvds 11758 | Strong form of dvdsval2 11752 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) | ||
Theorem | nndivides 11759* | Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁)) | ||
Theorem | dvdsdc 11760 | Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) | ||
Theorem | moddvds 11761 | Two ways to say 𝐴≡𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | ||
Theorem | modm1div 11762 | An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1))) | ||
Theorem | dvds0lem 11763 | A lemma to assist theorems of ∥ with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) | ||
Theorem | dvds1lem 11764* | A lemma to assist theorems of ∥ with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) & ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) ⇒ ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) | ||
Theorem | dvds2lem 11765* | A lemma to assist theorems of ∥ with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) & ⊢ (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) & ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁)) ⇒ ⊢ (𝜑 → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) → 𝑀 ∥ 𝑁)) | ||
Theorem | iddvds 11766 | An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | ||
Theorem | 1dvds 11767 | 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) | ||
Theorem | dvds0 11768 | Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) | ||
Theorem | negdvdsb 11769 | An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) | ||
Theorem | dvdsnegb 11770 | An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ -𝑁)) | ||
Theorem | absdvdsb 11771 | An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁)) | ||
Theorem | dvdsabsb 11772 | An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (abs‘𝑁))) | ||
Theorem | 0dvds 11773 | Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) | ||
Theorem | zdvdsdc 11774 | Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) | ||
Theorem | dvdsmul1 11775 | An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) | ||
Theorem | dvdsmul2 11776 | An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) | ||
Theorem | iddvdsexp 11777 | An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀↑𝑁)) | ||
Theorem | muldvds1 11778 | If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝐾 ∥ 𝑁)) | ||
Theorem | muldvds2 11779 | If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝑀 ∥ 𝑁)) | ||
Theorem | dvdscmul 11780 | Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁))) | ||
Theorem | dvdsmulc 11781 | Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾))) | ||
Theorem | dvdscmulr 11782 | Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀 ∥ 𝑁)) | ||
Theorem | dvdsmulcr 11783 | Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) ↔ 𝑀 ∥ 𝑁)) | ||
Theorem | summodnegmod 11784 | The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 𝐵) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = (-𝐵 mod 𝑁))) | ||
Theorem | modmulconst 11785 | Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)))) | ||
Theorem | dvds2ln 11786 | If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁)))) | ||
Theorem | dvds2add 11787 | If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 + 𝑁))) | ||
Theorem | dvds2sub 11788 | If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 − 𝑁))) | ||
Theorem | dvds2subd 11789 | Deduction form of dvds2sub 11788. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 − 𝑁)) | ||
Theorem | dvdstr 11790 | The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) | ||
Theorem | dvds2addd 11791 | Deduction form of dvds2add 11787. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 + 𝑁)) | ||
Theorem | dvdstrd 11792 | The divides relation is transitive, a deduction version of dvdstr 11790. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ 𝑁) | ||
Theorem | dvdsmultr1 11793 | If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀 · 𝑁))) | ||
Theorem | dvdsmultr1d 11794 | Natural deduction form of dvdsmultr1 11793. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 · 𝑁)) | ||
Theorem | dvdsmultr2 11795 | If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑁 → 𝐾 ∥ (𝑀 · 𝑁))) | ||
Theorem | ordvdsmul 11796 | If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∨ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 · 𝑁))) | ||
Theorem | dvdssub2 11797 | If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) | ||
Theorem | dvdsadd 11798 | An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑀 + 𝑁))) | ||
Theorem | dvdsaddr 11799 | An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑁 + 𝑀))) | ||
Theorem | dvdssub 11800 | An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑀 − 𝑁))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |