Theorem List for Intuitionistic Logic Explorer - 11701-11800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | iser3shft 11701* |
Index shift of the limit of an infinite series. (Contributed by Mario
Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
|
| ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
| |
| Theorem | climcau 11702* |
A converging sequence of complex numbers is a Cauchy sequence. The
converse would require excluded middle or a different definition of
Cauchy sequence (for example, fixing a rate of convergence as in
climcvg1n 11705). Theorem 12-5.3 of [Gleason] p. 180 (necessity part).
(Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
| |
| Theorem | climrecvg1n 11703* |
A Cauchy sequence of real numbers converges, existence version. The
rate of convergence is fixed: all terms after the nth term must be
within 𝐶 / 𝑛 of the nth term, where 𝐶 is a
constant multiplier.
(Contributed by Jim Kingdon, 23-Aug-2021.)
|
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛)) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| |
| Theorem | climcvg1nlem 11704* |
Lemma for climcvg1n 11705. We construct sequences of the real and
imaginary parts of each term of 𝐹, show those converge, and use
that to show that 𝐹 converges. (Contributed by Jim
Kingdon,
24-Aug-2021.)
|
| ⊢ (𝜑 → 𝐹:ℕ⟶ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛))
& ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹‘𝑥))) & ⊢ 𝐻 = (𝑥 ∈ ℕ ↦
(ℑ‘(𝐹‘𝑥))) & ⊢ 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻‘𝑥))) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| |
| Theorem | climcvg1n 11705* |
A Cauchy sequence of complex numbers converges, existence version.
The rate of convergence is fixed: all terms after the nth term must be
within 𝐶 / 𝑛 of the nth term, where 𝐶 is a
constant
multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
|
| ⊢ (𝜑 → 𝐹:ℕ⟶ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛)) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| |
| Theorem | climcaucn 11706* |
A converging sequence of complex numbers is a Cauchy sequence. This is
like climcau 11702 but adds the part that (𝐹‘𝑘) is complex.
(Contributed by Jim Kingdon, 24-Aug-2021.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| |
| Theorem | serf0 11707* |
If an infinite series converges, its underlying sequence converges to
zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro,
16-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ)
⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) |
| |
| 4.9.2 Finite and infinite sums
|
| |
| Syntax | csu 11708 |
Extend class notation to include finite summations. (An underscore was
added to the ASCII token in order to facilitate set.mm text searches,
since "sum" is a commonly used word in comments.)
|
| class Σ𝑘 ∈ 𝐴 𝐵 |
| |
| Definition | df-sumdc 11709* |
Define the sum of a series with an index set of integers 𝐴. The
variable 𝑘 is normally a free variable in 𝐵, i.e.,
𝐵
can be
thought of as 𝐵(𝑘). This definition is the result of a
collection of discussions over the most general definition for a sum
that does not need the index set to have a specified ordering. This
definition is in two parts, one for finite sums and one for subsets of
the upper integers. When summing over a subset of the upper integers,
we extend the index set to the upper integers by adding zero outside the
domain, and then sum the set in order, setting the result to the limit
of the partial sums, if it exists. This means that conditionally
convergent sums can be evaluated meaningfully. For finite sums, we are
explicitly order-independent, by picking any bijection to a 1-based
finite sequence and summing in the induced order. In both cases we have
an if expression so that we only need 𝐵 to be
defined where
𝑘
∈ 𝐴. In the
infinite case, we also require that the indexing
set be a decidable subset of an upperset of integers (that is,
membership of integers in it is decidable). These two methods of
summation produce the same result on their common region of definition
(i.e., finite sets of integers). Examples:
Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 =
7, and
Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 +
1/8 + ... = 1
(geoihalfsum 11877). (Contributed by NM, 11-Dec-2005.)
(Revised by Jim
Kingdon, 21-May-2023.)
|
| ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
| |
| Theorem | sumeq1 11710 |
Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised
by Mario Carneiro, 13-Jun-2019.)
|
| ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | nfsum1 11711 |
Bound-variable hypothesis builder for sum. (Contributed by NM,
11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
|
| ⊢ Ⅎ𝑘𝐴 ⇒ ⊢ Ⅎ𝑘Σ𝑘 ∈ 𝐴 𝐵 |
| |
| Theorem | nfsum 11712 |
Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not
free in 𝐴 and 𝐵, it is not free in Σ𝑘 ∈
𝐴𝐵.
(Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro,
13-Jun-2019.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥Σ𝑘 ∈ 𝐴 𝐵 |
| |
| Theorem | sumdc 11713* |
Decidability of a subset of upper integers. (Contributed by Jim
Kingdon, 1-Jan-2022.)
|
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑥 ∈
(ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
| |
| Theorem | sumeq2 11714* |
Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised
by Mario Carneiro, 13-Jul-2013.)
|
| ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | cbvsum 11715 |
Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
(Revised by Mario Carneiro, 13-Jun-2019.)
|
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶)
& ⊢ Ⅎ𝑘𝐴
& ⊢ Ⅎ𝑗𝐴
& ⊢ Ⅎ𝑘𝐵
& ⊢ Ⅎ𝑗𝐶 ⇒ ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | cbvsumv 11716* |
Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
(Revised by Mario Carneiro, 13-Jul-2013.)
|
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | cbvsumi 11717* |
Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
|
| ⊢ Ⅎ𝑘𝐵
& ⊢ Ⅎ𝑗𝐶
& ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | sumeq1i 11718* |
Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
|
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| |
| Theorem | sumeq2i 11719* |
Equality inference for sum. (Contributed by NM, 3-Dec-2005.)
|
| ⊢ (𝑘 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | sumeq12i 11720* |
Equality inference for sum. (Contributed by FL, 10-Dec-2006.)
|
| ⊢ 𝐴 = 𝐵
& ⊢ (𝑘 ∈ 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 |
| |
| Theorem | sumeq1d 11721* |
Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | sumeq2d 11722* |
Equality deduction for sum. Note that unlike sumeq2dv 11723, 𝑘 may
occur in 𝜑. (Contributed by NM, 1-Nov-2005.)
|
| ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | sumeq2dv 11723* |
Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised
by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | sumeq2ad 11724* |
Equality deduction for sum. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | sumeq2sdv 11725* |
Equality deduction for sum. (Contributed by NM, 3-Jan-2006.)
|
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | 2sumeq2dv 11726* |
Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐷) |
| |
| Theorem | sumeq12dv 11727* |
Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷) |
| |
| Theorem | sumeq12rdv 11728* |
Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷) |
| |
| Theorem | sumfct 11729* |
A lemma to facilitate conversions from the function form to the
class-variable form of a sum. (Contributed by Mario Carneiro,
12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
|
| ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → Σ𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fz1f1o 11730* |
A lemma for working with finite sums. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
| ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| |
| Theorem | nnf1o 11731 |
Lemma for sum and product theorems. (Contributed by Jim Kingdon,
15-Aug-2022.)
|
| ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐺:(1...𝑁)–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → 𝑁 = 𝑀) |
| |
| Theorem | sumrbdclem 11732* |
Lemma for sumrbdc 11734. (Contributed by Mario Carneiro,
12-Aug-2013.)
(Revised by Jim Kingdon, 8-Apr-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ ((𝜑 ∧ 𝐴 ⊆
(ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
| |
| Theorem | fsum3cvg 11733* |
The sequence of partial sums of a finite sum converges to the whole
sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim
Kingdon, 12-Nov-2022.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | sumrbdc 11734* |
Rebase the starting point of a sum. (Contributed by Mario Carneiro,
14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID
𝑘 ∈ 𝐴) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
| |
| Theorem | summodclem3 11735* |
Lemma for summodc 11738. (Contributed by Mario Carneiro,
29-Mar-2014.)
(Revised by Jim Kingdon, 9-Apr-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) & ⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴)
& ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁)) |
| |
| Theorem | summodclem2a 11736* |
Lemma for summodc 11738. (Contributed by Mario Carneiro,
3-Apr-2014.)
(Revised by Jim Kingdon, 9-Apr-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑓:(1...𝑁)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐾 Isom < , <
((1...(♯‘𝐴)),
𝐴)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁)) |
| |
| Theorem | summodclem2 11737* |
Lemma for summodc 11738. (Contributed by Mario Carneiro,
3-Apr-2014.)
(Revised by Jim Kingdon, 4-May-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| |
| Theorem | summodc 11738* |
A sum has at most one limit. (Contributed by Mario Carneiro,
3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) |
| |
| Theorem | zsumdc 11739* |
Series sum with index set a subset of the upper integers.
(Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim
Kingdon, 8-Apr-2023.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑍 DECID 𝑥 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
| |
| Theorem | isum 11740* |
Series sum with an upper integer index set (i.e. an infinite series).
(Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario
Carneiro, 7-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
| |
| Theorem | fsumgcl 11741* |
Closure for a function used to describe a sum over a nonempty finite
set. (Contributed by Jim Kingdon, 10-Oct-2022.)
|
| ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
| |
| Theorem | fsum3 11742* |
The value of a sum over a nonempty finite set. (Contributed by Jim
Kingdon, 10-Oct-2022.)
|
| ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) |
| |
| Theorem | sum0 11743 |
Any sum over the empty set is zero. (Contributed by Mario Carneiro,
12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
|
| ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| |
| Theorem | isumz 11744* |
Any sum of zero over a summable set is zero. (Contributed by Mario
Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
|
| ⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) |
| |
| Theorem | fsumf1o 11745* |
Re-index a finite sum using a bijection. (Contributed by Mario
Carneiro, 20-Apr-2014.)
|
| ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷)
& ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑛 ∈ 𝐶 𝐷) |
| |
| Theorem | isumss 11746* |
Change the index set to a subset in an upper integer sum.
(Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim
Kingdon, 21-Sep-2022.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | fisumss 11747* |
Change the index set to a subset in a finite sum. (Contributed by Mario
Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | isumss2 11748* |
Change the index set of a sum by adding zeroes. The nonzero elements
are in the contained set 𝐴 and the added zeroes compose the
rest of
the containing set 𝐵 which needs to be summable.
(Contributed by
Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ∨ 𝐵 ∈ Fin))
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0)) |
| |
| Theorem | fsum3cvg2 11749* |
The sequence of partial sums of a finite sum converges to the whole sum.
(Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon,
2-Dec-2022.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | fsumsersdc 11750* |
Special case of series sum over a finite upper integer index set.
(Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim
Kingdon, 5-May-2023.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | fsum3cvg3 11751* |
A finite sum is convergent. (Contributed by Mario Carneiro,
24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| |
| Theorem | fsum3ser 11752* |
A finite sum expressed in terms of a partial sum of an infinite series.
The recursive definition follows as fsum1 11767 and fsump1 11775, which should
make our notation clear and from which, along with closure fsumcl 11755, we
will derive the basic properties of finite sums. (Contributed by NM,
11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | fsumcl2lem 11753* |
- Lemma for finite sum closures. (The "-" before "Lemma"
forces the
math content to be displayed in the Statement List - NM 11-Feb-2008.)
(Contributed by Mario Carneiro, 3-Jun-2014.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ≠ ∅)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| |
| Theorem | fsumcllem 11754* |
- Lemma for finite sum closures. (The "-" before "Lemma"
forces the
math content to be displayed in the Statement List - NM 11-Feb-2008.)
(Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro,
3-Jun-2014.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 0 ∈ 𝑆) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| |
| Theorem | fsumcl 11755* |
Closure of a finite sum of complex numbers 𝐴(𝑘). (Contributed
by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| |
| Theorem | fsumrecl 11756* |
Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.)
(Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
| |
| Theorem | fsumzcl 11757* |
Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.)
(Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
| |
| Theorem | fsumnn0cl 11758* |
Closure of a finite sum of nonnegative integers. (Contributed by
Mario Carneiro, 23-Apr-2015.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈
ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈
ℕ0) |
| |
| Theorem | fsumrpcl 11759* |
Closure of a finite sum of positive reals. (Contributed by Mario
Carneiro, 3-Jun-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈
ℝ+) |
| |
| Theorem | fsumzcl2 11760* |
A finite sum with integer summands is an integer. (Contributed by
Alexander van der Vekens, 31-Aug-2018.)
|
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
| |
| Theorem | fsumadd 11761* |
The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised
by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) |
| |
| Theorem | fsumsplit 11762* |
Split a sum into two parts. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | fsumsplitf 11763* |
Split a sum into two parts. A version of fsumsplit 11762 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | sumsnf 11764* |
A sum of a singleton is the term. A version of sumsn 11766 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝐵
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| |
| Theorem | fsumsplitsn 11765* |
Separate out a term in a finite sum. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ Ⅎ𝑘𝐷
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
| |
| Theorem | sumsn 11766* |
A sum of a singleton is the term. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
| ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| |
| Theorem | fsum1 11767* |
The finite sum of 𝐴(𝑘) from 𝑘 = 𝑀 to 𝑀 (i.e. a sum with
only one term) is 𝐵 i.e. 𝐴(𝑀). (Contributed by NM,
8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
|
| ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵) |
| |
| Theorem | sumpr 11768* |
A sum over a pair is the sum of the elements. (Contributed by Thierry
Arnoux, 12-Dec-2016.)
|
| ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷)
& ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸)
& ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
| |
| Theorem | sumtp 11769* |
A sum over a triple is the sum of the elements. (Contributed by AV,
24-Jul-2020.)
|
| ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸)
& ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹)
& ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺)
& ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵)
& ⊢ (𝜑 → 𝐴 ≠ 𝐶)
& ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
| |
| Theorem | sumsns 11770* |
A sum of a singleton is the term. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
| ⊢ ((𝑀 ∈ 𝑉 ∧ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| |
| Theorem | fsumm1 11771* |
Separate out the last term in a finite sum. (Contributed by Mario
Carneiro, 26-Apr-2014.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
| |
| Theorem | fzosump1 11772* |
Separate out the last term in a finite sum. (Contributed by Mario
Carneiro, 13-Apr-2016.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀..^𝑁)𝐴 + 𝐵)) |
| |
| Theorem | fsum1p 11773* |
Separate out the first term in a finite sum. (Contributed by NM,
3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
| |
| Theorem | fsumsplitsnun 11774* |
Separate out a term in a finite sum by splitting the sum into two parts.
(Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV,
17-Dec-2021.)
|
| ⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘 ∈ 𝐴 𝐵 + ⦋𝑍 / 𝑘⦌𝐵)) |
| |
| Theorem | fsump1 11775* |
The addition of the next term in a finite sum of 𝐴(𝑘) is the
current term plus 𝐵 i.e. 𝐴(𝑁 + 1). (Contributed by NM,
4-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝑁)𝐴 + 𝐵)) |
| |
| Theorem | isumclim 11776* |
An infinite sum equals the value its series converges to.
(Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro,
23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = 𝐵) |
| |
| Theorem | isumclim2 11777* |
A converging series converges to its infinite sum. (Contributed by NM,
2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
| |
| Theorem | isumclim3 11778* |
The sequence of partial finite sums of a converging infinite series
converges to the infinite sum of the series. Note that 𝑗 must
not
occur in 𝐴. (Contributed by NM, 9-Jan-2006.)
(Revised by Mario
Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) ⇒ ⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
| |
| Theorem | sumnul 11779* |
The sum of a non-convergent infinite series evaluates to the empty
set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario
Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ∅) |
| |
| Theorem | isumcl 11780* |
The sum of a converging infinite series is a complex number.
(Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro,
23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℂ) |
| |
| Theorem | isummulc2 11781* |
An infinite sum multiplied by a constant. (Contributed by NM,
12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
| |
| Theorem | isummulc1 11782* |
An infinite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 · 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 · 𝐵)) |
| |
| Theorem | isumdivapc 11783* |
An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 / 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 / 𝐵)) |
| |
| Theorem | isumrecl 11784* |
The sum of a converging infinite real series is a real number.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℝ) |
| |
| Theorem | isumge0 11785* |
An infinite sum of nonnegative terms is nonnegative. (Contributed by
Mario Carneiro, 28-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝑍 𝐴) |
| |
| Theorem | isumadd 11786* |
Addition of infinite sums. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
| |
| Theorem | sumsplitdc 11787* |
Split a sum into two parts. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = if(𝑘 ∈ 𝐵, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | fsump1i 11788* |
Optimized version of fsump1 11775 for making sums of a concrete number of
terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝐾 + 1) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) & ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
| |
| Theorem | fsum2dlemstep 11789* |
Lemma for fsum2d 11790- induction step. (Contributed by Mario
Carneiro,
23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥)
& ⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
& ⊢ (𝜑 → 𝑥 ∈ Fin) & ⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) |
| |
| Theorem | fsum2d 11790* |
Write a double sum as a sum over a two-dimensional region. Note that
𝐵(𝑗) is a function of 𝑗.
(Contributed by Mario Carneiro,
27-Apr-2014.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) |
| |
| Theorem | fsumxp 11791* |
Combine two sums into a single sum over the cartesian product.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ (𝐴 × 𝐵)𝐷) |
| |
| Theorem | fsumcnv 11792* |
Transform a region of summation by using the converse operation.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝑥 = 〈𝑗, 𝑘〉 → 𝐵 = 𝐷)
& ⊢ (𝑦 = 〈𝑘, 𝑗〉 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Rel 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 𝐵 = Σ𝑦 ∈ ◡ 𝐴𝐶) |
| |
| Theorem | fisumcom2 11793* |
Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘)
are not necessarily constant expressions. (Contributed by Mario
Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
(Proof shortened by JJ, 2-Aug-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ Fin) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐸 = Σ𝑘 ∈ 𝐶 Σ𝑗 ∈ 𝐷 𝐸) |
| |
| Theorem | fsumcom 11794* |
Interchange order of summation. (Contributed by NM, 15-Nov-2005.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝐵 Σ𝑗 ∈ 𝐴 𝐶) |
| |
| Theorem | fsum0diaglem 11795* |
Lemma for fisum0diag 11796. (Contributed by Mario Carneiro,
28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
| ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) |
| |
| Theorem | fisum0diag 11796* |
Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular
region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by NM,
31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
| ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) |
| |
| Theorem | mptfzshft 11797* |
1-1 onto function in maps-to notation which shifts a finite set of
sequential integers. (Contributed by AV, 24-Aug-2019.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
| |
| Theorem | fsumrev 11798* |
Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised
by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |
| |
| Theorem | fsumshft 11799* |
Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.)
(Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV,
8-Sep-2019.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| |
| Theorem | fsumshftm 11800* |
Negative index shift of a finite sum. (Contributed by NM,
28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |