HomeHome Intuitionistic Logic Explorer
Theorem List (p. 118 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11701-11800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdvdsgcdb 11701 Biconditional form of dvdsgcd 11700. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) ↔ 𝐾 ∥ (𝑀 gcd 𝑁)))
 
Theoremdfgcd2 11702* Alternate definition of the gcd operator, see definition in [ApostolNT] p. 15. (Contributed by AV, 8-Aug-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))))
 
Theoremgcdass 11703 Associative law for gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃)))
 
Theoremmulgcd 11704 Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.)
((𝐾 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
 
Theoremabsmulgcd 11705 Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))
 
Theoremmulgcdr 11706 Reverse distribution law for the gcd operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 · 𝐶) gcd (𝐵 · 𝐶)) = ((𝐴 gcd 𝐵) · 𝐶))
 
Theoremgcddiv 11707 Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
 
Theoremgcdmultiple 11708 The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
 
Theoremgcdmultiplez 11709 Extend gcdmultiple 11708 so 𝑁 can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
 
Theoremgcdzeq 11710 A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 11711. (Contributed by AV, 1-Jul-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
 
Theoremgcdeq 11711 𝐴 is equal to its gcd with 𝐵 if and only if 𝐴 divides 𝐵. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by AV, 8-Aug-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
 
Theoremdvdssqim 11712 Unidirectional form of dvdssq 11719. (Contributed by Scott Fenton, 19-Apr-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
 
Theoremdvdsmulgcd 11713 Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
 
Theoremrpmulgcd 11714 If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁))
 
Theoremrplpwr 11715 If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1))
 
Theoremrppwr 11716 If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
 
Theoremsqgcd 11717 Square distributes over GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))
 
Theoremdvdssqlem 11718 Lemma for dvdssq 11719. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
 
Theoremdvdssq 11719 Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
 
Theorembezoutr 11720 Partial converse to bezout 11699. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
 
Theorembezoutr1 11721 Converse of bezout 11699 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))
 
5.1.6  Algorithms
 
Theoremnn0seqcvgd 11722* A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝜑𝐹:ℕ0⟶ℕ0)    &   (𝜑𝑁 = (𝐹‘0))    &   ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))       (𝜑 → (𝐹𝑁) = 0)
 
Theoremialgrlem1st 11723 Lemma for ialgr0 11725. Expressing algrflemg 6127 in a form suitable for theorems such as seq3-1 10233 or seqf 10234. (Contributed by Jim Kingdon, 22-Jul-2021.)
(𝜑𝐹:𝑆𝑆)       ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
 
Theoremialgrlemconst 11724 Lemma for ialgr0 11725. Closure of a constant function, in a form suitable for theorems such as seq3-1 10233 or seqf 10234. (Contributed by Jim Kingdon, 22-Jul-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐴𝑆)       ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
 
Theoremialgr0 11725 The value of the algorithm iterator 𝑅 at 0 is the initial state 𝐴. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
𝑍 = (ℤ𝑀)    &   𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐹:𝑆𝑆)       (𝜑 → (𝑅𝑀) = 𝐴)
 
Theoremalgrf 11726 An algorithm is a step function 𝐹:𝑆𝑆 on a state space 𝑆. An algorithm acts on an initial state 𝐴𝑆 by iteratively applying 𝐹 to give 𝐴, (𝐹𝐴), (𝐹‘(𝐹𝐴)) and so on. An algorithm is said to halt if a fixed point of 𝐹 is reached after a finite number of iterations.

The algorithm iterator 𝑅:ℕ0𝑆 "runs" the algorithm 𝐹 so that (𝑅𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴.

Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

𝑍 = (ℤ𝑀)    &   𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐹:𝑆𝑆)       (𝜑𝑅:𝑍𝑆)
 
Theoremalgrp1 11727 The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
𝑍 = (ℤ𝑀)    &   𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐹:𝑆𝑆)       ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))
 
Theoremalginv 11728* If 𝐼 is an invariant of 𝐹, then its value is unchanged after any number of iterations of 𝐹. (Contributed by Paul Chapman, 31-Mar-2011.)
𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝐹:𝑆𝑆    &   (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))       ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
 
Theoremalgcvg 11729* One way to prove that an algorithm halts is to construct a countdown function 𝐶:𝑆⟶ℕ0 whose value is guaranteed to decrease for each iteration of 𝐹 until it reaches 0. That is, if 𝑋𝑆 is not a fixed point of 𝐹, then (𝐶‘(𝐹𝑋)) < (𝐶𝑋).

If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.)

𝐹:𝑆𝑆    &   𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝐶:𝑆⟶ℕ0    &   (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))    &   𝑁 = (𝐶𝐴)       (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
 
Theoremalgcvgblem 11730 Lemma for algcvgb 11731. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))
 
Theoremalgcvgb 11731 Two ways of expressing that 𝐶 is a countdown function for algorithm 𝐹. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.)
𝐹:𝑆𝑆    &   𝐶:𝑆⟶ℕ0       (𝑋𝑆 → (((𝐶‘(𝐹𝑋)) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ↔ (((𝐶𝑋) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ∧ ((𝐶𝑋) = 0 → (𝐶‘(𝐹𝑋)) = 0))))
 
Theoremalgcvga 11732* The countdown function 𝐶 remains 0 after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹:𝑆𝑆    &   𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝐶:𝑆⟶ℕ0    &   (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))    &   𝑁 = (𝐶𝐴)       (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
 
Theoremalgfx 11733* If 𝐹 reaches a fixed point when the countdown function 𝐶 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹:𝑆𝑆    &   𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝐶:𝑆⟶ℕ0    &   (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))    &   𝑁 = (𝐶𝐴)    &   (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))       (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
 
5.1.7  Euclid's Algorithm
 
Theoremeucalgval2 11734* The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
 
Theoremeucalgval 11735* Euclid's Algorithm eucalg 11740 computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0.

The value of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
 
Theoremeucalgf 11736* Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
 
Theoremeucalginv 11737* The invariant of the step function 𝐸 for Euclid's Algorithm is the gcd operator applied to the state. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘𝑋))
 
Theoremeucalglt 11738* The second member of the state decreases with each iteration of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))       (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
 
Theoremeucalgcvga 11739* Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))    &   𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝑁 = (2nd𝐴)       (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
 
Theoremeucalg 11740* Euclid's Algorithm computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0. Theorem 1.15 in [ApostolNT] p. 20.

Upon halting, the 1st member of the final state (𝑅𝑁) is equal to the gcd of the values comprising the input state 𝑀, 𝑁. This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by Mario Carneiro, 29-May-2014.)

𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))    &   𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))    &   𝐴 = ⟨𝑀, 𝑁       ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = (𝑀 gcd 𝑁))
 
5.1.8  The least common multiple

According to Wikipedia ("Least common multiple", 27-Aug-2020, https://en.wikipedia.org/wiki/Least_common_multiple): "In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers a and b, usually denoted by lcm(a, b), is the smallest positive integer that is divisible by both a and b. Since division of integers by zero is undefined, this definition has meaning only if a and b are both different from zero. However, some authors define lcm(a,0) as 0 for all a, which is the result of taking the lcm to be the least upper bound in the lattice of divisibility."

In this section, an operation calculating the least common multiple of two integers (df-lcm 11742). The definition is valid for all integers, including negative integers and 0, obeying the above mentioned convention.

 
Syntaxclcm 11741 Extend the definition of a class to include the least common multiple operator.
class lcm
 
Definitiondf-lcm 11742* Define the lcm operator. For example, (6 lcm 9) = 18. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
 
Theoremlcmmndc 11743 Decidablity lemma used in various proofs related to lcm. (Contributed by Jim Kingdon, 21-Jan-2022.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
 
Theoremlcmval 11744* Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 11636 and gcdval 11648. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
 
Theoremlcmcom 11745 The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
 
Theoremlcm0val 11746 The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 11745 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
(𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
 
Theoremlcmn0val 11747* The value of the lcm operator when both operands are nonzero. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
 
Theoremlcmcllem 11748* Lemma for lcmn0cl 11749 and dvdslcm 11750. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
 
Theoremlcmn0cl 11749 Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ)
 
Theoremdvdslcm 11750 The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
 
Theoremlcmledvds 11751 A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
(((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾))
 
Theoremlcmeq0 11752 The lcm of two integers is zero iff either is zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = 0 ↔ (𝑀 = 0 ∨ 𝑁 = 0)))
 
Theoremlcmcl 11753 Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
 
Theoremgcddvdslcm 11754 The greatest common divisor of two numbers divides their least common multiple. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ (𝑀 lcm 𝑁))
 
Theoremlcmneg 11755 Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))
 
Theoremneglcm 11756 Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm 𝑁) = (𝑀 lcm 𝑁))
 
Theoremlcmabs 11757 The lcm of two integers is the same as that of their absolute values. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
 
Theoremlcmgcdlem 11758 Lemma for lcmgcd 11759 and lcmdvds 11760. Prove them for positive 𝑀, 𝑁, and 𝐾. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)) ∧ ((𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)) → (𝑀 lcm 𝑁) ∥ 𝐾)))
 
Theoremlcmgcd 11759 The product of two numbers' least common multiple and greatest common divisor is the absolute value of the product of the two numbers. In particular, that absolute value is the least common multiple of two coprime numbers, for which (𝑀 gcd 𝑁) = 1.

Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic or of Bézout's identity bezout 11699; see e.g. https://proofwiki.org/wiki/Product_of_GCD_and_LCM 11699 and https://math.stackexchange.com/a/470827 11699. This proof uses the latter to first confirm it for positive integers 𝑀 and 𝑁 (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 11746 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)

((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
 
Theoremlcmdvds 11760 The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
 
Theoremlcmid 11761 The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.)
(𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀))
 
Theoremlcm1 11762 The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020.)
(𝑀 ∈ ℤ → (𝑀 lcm 1) = (abs‘𝑀))
 
Theoremlcmgcdnn 11763 The product of two positive integers' least common multiple and greatest common divisor is the product of the two integers. (Contributed by AV, 27-Aug-2020.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁))
 
Theoremlcmgcdeq 11764 Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁)))
 
Theoremlcmdvdsb 11765 Biconditional form of lcmdvds 11760. (Contributed by Steve Rodriguez, 20-Jan-2020.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) ↔ (𝑀 lcm 𝑁) ∥ 𝐾))
 
Theoremlcmass 11766 Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃)))
 
Theorem3lcm2e6woprm 11767 The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
(3 lcm 2) = 6
 
Theorem6lcm4e12 11768 The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
(6 lcm 4) = 12
 
5.1.9  Coprimality and Euclid's lemma

According to Wikipedia "Coprime integers", see https://en.wikipedia.org/wiki/Coprime_integers (16-Aug-2020) "[...] two integers a and b are said to be relatively prime, mutually prime, or coprime [...] if the only positive integer (factor) that divides both of them is 1. Consequently, any prime number that divides one does not divide the other. This is equivalent to their greatest common divisor (gcd) being 1.". In the following, we use this equivalent characterization to say that 𝐴 ∈ ℤ and 𝐵 ∈ ℤ are coprime (or relatively prime) if (𝐴 gcd 𝐵) = 1. The equivalence of the definitions is shown by coprmgcdb 11769. The negation, i.e. two integers are not coprime, can be expressed either by (𝐴 gcd 𝐵) ≠ 1, see ncoprmgcdne1b 11770, or equivalently by 1 < (𝐴 gcd 𝐵), see ncoprmgcdgt1b 11771.

A proof of Euclid's lemma based on coprimality is provided in coprmdvds 11773 (as opposed to Euclid's lemma for primes).

 
Theoremcoprmgcdb 11769* Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
 
Theoremncoprmgcdne1b 11770* Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
 
Theoremncoprmgcdgt1b 11771* Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is greater than 1. (Contributed by AV, 9-Aug-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ 1 < (𝐴 gcd 𝐵)))
 
Theoremcoprmdvds1 11772 If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.)
((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
 
Theoremcoprmdvds 11773 Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by AV, 10-Jul-2021.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾𝑁))
 
Theoremcoprmdvds2 11774 If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀𝐾𝑁𝐾) → (𝑀 · 𝑁) ∥ 𝐾))
 
Theoremmulgcddvds 11775 One half of rpmulgcd2 11776, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
 
Theoremrpmulgcd2 11776 If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
 
Theoremqredeq 11777 Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))
 
Theoremqredeu 11778* Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
(𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
 
Theoremrpmul 11779 If 𝐾 is relatively prime to 𝑀 and to 𝑁, it is also relatively prime to their product. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-Jul-2015.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑀) = 1 ∧ (𝐾 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = 1))
 
Theoremrpdvds 11780 If 𝐾 is relatively prime to 𝑁 then it is also relatively prime to any divisor 𝑀 of 𝑁. (Contributed by Mario Carneiro, 19-Jun-2015.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) = 1)
 
5.1.10  Cancellability of congruences
 
Theoremcongr 11781* Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory)): An integer 𝐴 is congruent to an integer 𝐵 modulo 𝑀 if their difference is a multiple of 𝑀. See also the definition in [ApostolNT] p. 104: "... 𝑎 is congruent to 𝑏 modulo 𝑚, and we write 𝑎𝑏 (mod 𝑚) if 𝑚 divides the difference 𝑎𝑏", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence, 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = (𝐴𝐵)))
 
Theoremdivgcdcoprm0 11782 Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
 
Theoremdivgcdcoprmex 11783* Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
 
Theoremcncongr1 11784 One direction of the bicondition in cncongr 11786. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
 
Theoremcncongr2 11785 The other direction of the bicondition in cncongr 11786. (Contributed by AV, 11-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
 
Theoremcncongr 11786 Cancellability of Congruences (see ProofWiki "Cancellability of Congruences, https://proofwiki.org/wiki/Cancellability_of_Congruences, 10-Jul-2021): Two products with a common factor are congruent modulo a positive integer iff the other factors are congruent modulo the integer divided by the greates common divisor of the integer and the common factor. See also Theorem 5.4 "Cancellation law" in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
 
Theoremcncongrcoprm 11787 Corollary 1 of Cancellability of Congruences: Two products with a common factor are congruent modulo an integer being coprime to the common factor iff the other factors are congruent modulo the integer. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ (𝐶 gcd 𝑁) = 1)) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
 
5.2  Elementary prime number theory
 
5.2.1  Elementary properties

Remark: to represent odd prime numbers, i.e., all prime numbers except 2, the idiom 𝑃 ∈ (ℙ ∖ {2}) is used. It is a little bit shorter than (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2). Both representations can be converted into each other by eldifsn 3650.

 
Syntaxcprime 11788 Extend the definition of a class to include the set of prime numbers.
class
 
Definitiondf-prm 11789* Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011.)
ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
 
Theoremisprm 11790* The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
 
Theoremprmnn 11791 A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
 
Theoremprmz 11792 A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.)
(𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
 
Theoremprmssnn 11793 The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
ℙ ⊆ ℕ
 
Theoremprmex 11794 The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
ℙ ∈ V
 
Theorem1nprm 11795 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
¬ 1 ∈ ℙ
 
Theorem1idssfct 11796* The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
 
Theoremisprm2lem 11797* Lemma for isprm2 11798. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
 
Theoremisprm2 11798* The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
(𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
 
Theoremisprm3 11799* The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
(𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
 
Theoremisprm4 11800* The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.)
(𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >