MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omoe Structured version   Visualization version   GIF version

Theorem omoe 16412
Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omoe (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴𝐵))

Proof of Theorem omoe
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 16389 . . . . 5 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 odd2np1 16389 . . . . 5 (𝐵 ∈ ℤ → (¬ 2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
31, 2bi2anan9 637 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵)))
4 reeanv 3235 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
5 2z 12675 . . . . . . . . 9 2 ∈ ℤ
6 zsubcl 12685 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎𝑏) ∈ ℤ)
7 dvdsmul1 16326 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝑎𝑏) ∈ ℤ) → 2 ∥ (2 · (𝑎𝑏)))
85, 6, 7sylancr 586 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (2 · (𝑎𝑏)))
9 zcn 12644 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
10 zcn 12644 . . . . . . . . 9 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
11 2cn 12368 . . . . . . . . . . . 12 2 ∈ ℂ
12 mulcl 11268 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
1311, 12mpan 689 . . . . . . . . . . 11 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
14 mulcl 11268 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
1511, 14mpan 689 . . . . . . . . . . 11 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
16 ax-1cn 11242 . . . . . . . . . . . 12 1 ∈ ℂ
17 pnpcan2 11576 . . . . . . . . . . . 12 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = ((2 · 𝑎) − (2 · 𝑏)))
1816, 17mp3an3 1450 . . . . . . . . . . 11 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = ((2 · 𝑎) − (2 · 𝑏)))
1913, 15, 18syl2an 595 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = ((2 · 𝑎) − (2 · 𝑏)))
20 subdi 11723 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
2111, 20mp3an1 1448 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
2219, 21eqtr4d 2783 . . . . . . . . 9 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = (2 · (𝑎𝑏)))
239, 10, 22syl2an 595 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = (2 · (𝑎𝑏)))
248, 23breqtrrd 5194 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)))
25 oveq12 7457 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = (𝐴𝐵))
2625breq2d 5178 . . . . . . 7 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (2 ∥ (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) ↔ 2 ∥ (𝐴𝐵)))
2724, 26syl5ibcom 245 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴𝐵)))
2827rexlimivv 3207 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴𝐵))
294, 28sylbir 235 . . . 4 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴𝐵))
303, 29biimtrdi 253 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 2 ∥ (𝐴𝐵)))
3130imp 406 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴𝐵))
3231an4s 659 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  2c2 12348  cz 12639  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-dvds 16303
This theorem is referenced by:  oddprm  16857  pythagtriplem13  16874  gausslemma2dlem1a  27427  lgsquad2lem1  27446  lgsquad3  27449  jm2.22  42952  jm2.23  42953
  Copyright terms: Public domain W3C validator