MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemk Structured version   Visualization version   GIF version

Theorem pntlemk 27493
Description: Lemma for pnt 27501. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Assertion
Ref Expression
pntlemk (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝑢,𝐿   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemk
StepHypRef Expression
1 2re 12236 . . . . 5 2 ∈ ℝ
2 fzfid 13914 . . . . . 6 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
3 elfznn 13490 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
43adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
54nnrpd 12969 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
65relogcld 26508 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
76, 4nndivred 12216 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℝ)
82, 7fsumrecl 15676 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ)
9 remulcl 11129 . . . . 5 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
101, 8, 9sylancr 587 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
11 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
12 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
13 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
14 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
15 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
16 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
17 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
18 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
19 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
20 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
21 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
22 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
23 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
24 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
25 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
2611, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25pntlemb 27484 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2726simp1d 1142 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2827relogcld 26508 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ)
29 peano2re 11323 . . . . . 6 ((log‘𝑍) ∈ ℝ → ((log‘𝑍) + 1) ∈ ℝ)
3028, 29syl 17 . . . . 5 (𝜑 → ((log‘𝑍) + 1) ∈ ℝ)
3130resqcld 14066 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ∈ ℝ)
32 3re 12242 . . . . . 6 3 ∈ ℝ
33 readdcl 11127 . . . . . 6 (((log‘𝑍) ∈ ℝ ∧ 3 ∈ ℝ) → ((log‘𝑍) + 3) ∈ ℝ)
3428, 32, 33sylancl 586 . . . . 5 (𝜑 → ((log‘𝑍) + 3) ∈ ℝ)
3534, 28remulcld 11180 . . . 4 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) ∈ ℝ)
3627rpred 12971 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℝ)
3721simpld 494 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
3836, 37rerpdivcld 13002 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
39 1red 11151 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
4027rpsqrtcld 15354 . . . . . . . . . . . 12 (𝜑 → (√‘𝑍) ∈ ℝ+)
4140rpred 12971 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ∈ ℝ)
42 ere 16031 . . . . . . . . . . . . 13 e ∈ ℝ
4342a1i 11 . . . . . . . . . . . 12 (𝜑 → e ∈ ℝ)
44 1re 11150 . . . . . . . . . . . . . 14 1 ∈ ℝ
45 1lt2 12328 . . . . . . . . . . . . . . 15 1 < 2
46 egt2lt3 16150 . . . . . . . . . . . . . . . 16 (2 < e ∧ e < 3)
4746simpli 483 . . . . . . . . . . . . . . 15 2 < e
4844, 1, 42lttri 11276 . . . . . . . . . . . . . . 15 ((1 < 2 ∧ 2 < e) → 1 < e)
4945, 47, 48mp2an 692 . . . . . . . . . . . . . 14 1 < e
5044, 42, 49ltleii 11273 . . . . . . . . . . . . 13 1 ≤ e
5150a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ≤ e)
5226simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5352simp2d 1143 . . . . . . . . . . . 12 (𝜑 → e ≤ (√‘𝑍))
5439, 43, 41, 51, 53letrd 11307 . . . . . . . . . . 11 (𝜑 → 1 ≤ (√‘𝑍))
5552simp3d 1144 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑌))
5639, 41, 38, 54, 55letrd 11307 . . . . . . . . . 10 (𝜑 → 1 ≤ (𝑍 / 𝑌))
57 flge1nn 13759 . . . . . . . . . 10 (((𝑍 / 𝑌) ∈ ℝ ∧ 1 ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5838, 56, 57syl2anc 584 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5958nnrpd 12969 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ+)
6059relogcld 26508 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ∈ ℝ)
6160, 39readdcld 11179 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ∈ ℝ)
6261resqcld 14066 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ)
63 logdivbnd 27443 . . . . . . 7 ((⌊‘(𝑍 / 𝑌)) ∈ ℕ → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
6458, 63syl 17 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
651a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
66 2pos 12265 . . . . . . . 8 0 < 2
6766a1i 11 . . . . . . 7 (𝜑 → 0 < 2)
68 lemuldiv2 12040 . . . . . . 7 ((Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ ∧ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
698, 62, 65, 67, 68syl112anc 1376 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
7064, 69mpbird 257 . . . . 5 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2))
71 reflcl 13734 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
7238, 71syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
73 flle 13737 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7438, 73syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7521simprd 495 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑌)
76 1rp 12931 . . . . . . . . . . . . 13 1 ∈ ℝ+
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ+)
7877, 37, 27lediv2d 12995 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑌 ↔ (𝑍 / 𝑌) ≤ (𝑍 / 1)))
7975, 78mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ≤ (𝑍 / 1))
8036recnd 11178 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℂ)
8180div1d 11926 . . . . . . . . . 10 (𝜑 → (𝑍 / 1) = 𝑍)
8279, 81breqtrd 5128 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑌) ≤ 𝑍)
8372, 38, 36, 74, 82letrd 11307 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ 𝑍)
8459, 27logled 26512 . . . . . . . 8 (𝜑 → ((⌊‘(𝑍 / 𝑌)) ≤ 𝑍 ↔ (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍)))
8583, 84mpbid 232 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍))
8660, 28, 39, 85leadd1dd 11768 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1))
87 0red 11153 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
88 log1 26470 . . . . . . . . 9 (log‘1) = 0
8958nnge1d 12210 . . . . . . . . . 10 (𝜑 → 1 ≤ (⌊‘(𝑍 / 𝑌)))
90 logleb 26488 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℝ+) → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9176, 59, 90sylancr 587 . . . . . . . . . 10 (𝜑 → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9289, 91mpbid 232 . . . . . . . . 9 (𝜑 → (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9388, 92eqbrtrrid 5138 . . . . . . . 8 (𝜑 → 0 ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9460lep1d 12090 . . . . . . . 8 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9587, 60, 61, 93, 94letrd 11307 . . . . . . 7 (𝜑 → 0 ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9687, 61, 30, 95, 86letrd 11307 . . . . . . 7 (𝜑 → 0 ≤ ((log‘𝑍) + 1))
9761, 30, 95, 96le2sqd 14198 . . . . . 6 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1) ↔ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2)))
9886, 97mpbid 232 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2))
9910, 62, 31, 70, 98letrd 11307 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 1)↑2))
10028resqcld 14066 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ)
10165, 28remulcld 11180 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℝ)
102100, 101readdcld 11179 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + (2 · (log‘𝑍))) ∈ ℝ)
103 loge 26471 . . . . . . 7 (log‘e) = 1
10440rpge0d 12975 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘𝑍))
10541, 41, 104, 54lemulge12d 12097 . . . . . . . . . 10 (𝜑 → (√‘𝑍) ≤ ((√‘𝑍) · (√‘𝑍)))
10627rprege0d 12978 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
107 remsqsqrt 15198 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
108106, 107syl 17 . . . . . . . . . 10 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
109105, 108breqtrd 5128 . . . . . . . . 9 (𝜑 → (√‘𝑍) ≤ 𝑍)
11043, 41, 36, 53, 109letrd 11307 . . . . . . . 8 (𝜑 → e ≤ 𝑍)
111 epr 16152 . . . . . . . . 9 e ∈ ℝ+
112 logleb 26488 . . . . . . . . 9 ((e ∈ ℝ+𝑍 ∈ ℝ+) → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
113111, 27, 112sylancr 587 . . . . . . . 8 (𝜑 → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
114110, 113mpbid 232 . . . . . . 7 (𝜑 → (log‘e) ≤ (log‘𝑍))
115103, 114eqbrtrrid 5138 . . . . . 6 (𝜑 → 1 ≤ (log‘𝑍))
11639, 28, 102, 115leadd2dd 11769 . . . . 5 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1) ≤ ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
11728recnd 11178 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
118 binom21 14160 . . . . . 6 ((log‘𝑍) ∈ ℂ → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
119117, 118syl 17 . . . . 5 (𝜑 → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
120117sqvald 14084 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
121 df-3 12226 . . . . . . . . . 10 3 = (2 + 1)
122121oveq1i 7379 . . . . . . . . 9 (3 · (log‘𝑍)) = ((2 + 1) · (log‘𝑍))
123 2cnd 12240 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
124 1cnd 11145 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
125123, 124, 117adddird 11175 . . . . . . . . 9 (𝜑 → ((2 + 1) · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
126122, 125eqtrid 2776 . . . . . . . 8 (𝜑 → (3 · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
127117mullidd 11168 . . . . . . . . 9 (𝜑 → (1 · (log‘𝑍)) = (log‘𝑍))
128127oveq2d 7385 . . . . . . . 8 (𝜑 → ((2 · (log‘𝑍)) + (1 · (log‘𝑍))) = ((2 · (log‘𝑍)) + (log‘𝑍)))
129126, 128eqtr2d 2765 . . . . . . 7 (𝜑 → ((2 · (log‘𝑍)) + (log‘𝑍)) = (3 · (log‘𝑍)))
130120, 129oveq12d 7387 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
131117sqcld 14085 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℂ)
132 2cn 12237 . . . . . . . 8 2 ∈ ℂ
133 mulcl 11128 . . . . . . . 8 ((2 ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) → (2 · (log‘𝑍)) ∈ ℂ)
134132, 117, 133sylancr 587 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℂ)
135131, 134, 117addassd 11172 . . . . . 6 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)) = (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))))
136 3cn 12243 . . . . . . . 8 3 ∈ ℂ
137136a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℂ)
138117, 137, 117adddird 11175 . . . . . 6 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
139130, 135, 1383eqtr4rd 2775 . . . . 5 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
140116, 119, 1393brtr4d 5134 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14110, 31, 35, 99, 140letrd 11307 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14210, 35, 17lemul2d 13015 . . 3 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)) ↔ (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍)))))
143141, 142mpbid 232 . 2 (𝜑 → (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
14417rpred 12971 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
145144adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ)
146145recnd 11178 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℂ)
1476recnd 11178 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ)
1485rpcnne0d 12980 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
149 div23 11832 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = ((𝑈 / 𝑛) · (log‘𝑛)))
150 divass 11831 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = (𝑈 · ((log‘𝑛) / 𝑛)))
151149, 150eqtr3d 2766 . . . . . . 7 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
152146, 147, 148, 151syl3anc 1373 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
153152sumeq2dv 15644 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
154144recnd 11178 . . . . . 6 (𝜑𝑈 ∈ ℂ)
1557recnd 11178 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℂ)
1562, 154, 155fsummulc2 15726 . . . . 5 (𝜑 → (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
157153, 156eqtr4d 2767 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)))
158157oveq2d 7385 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
1598recnd 11178 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℂ)
160123, 154, 159mul12d 11359 . . 3 (𝜑 → (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
161158, 160eqtrd 2764 . 2 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
16234recnd 11178 . . 3 (𝜑 → ((log‘𝑍) + 3) ∈ ℂ)
163154, 162, 117mulassd 11173 . 2 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) = (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
164143, 161, 1633brtr4d 5134 1 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  4c4 12219  cdc 12625  +crp 12927  (,)cioo 13282  [,)cico 13284  [,]cicc 13285  ...cfz 13444  cfl 13728  cexp 14002  csqrt 15175  abscabs 15176  Σcsu 15628  expce 16003  eceu 16004  logclog 26439  ψcchp 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-e 16010  df-sin 16011  df-cos 16012  df-tan 16013  df-pi 16014  df-dvds 16199  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-ulm 26262  df-log 26441  df-atan 26753  df-em 26879
This theorem is referenced by:  pntlemo  27494
  Copyright terms: Public domain W3C validator