MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemk Structured version   Visualization version   GIF version

Theorem pntlemk 26659
Description: Lemma for pnt 26667. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Assertion
Ref Expression
pntlemk (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝑢,𝐿   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemk
StepHypRef Expression
1 2re 11977 . . . . 5 2 ∈ ℝ
2 fzfid 13621 . . . . . 6 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
3 elfznn 13214 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
43adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
54nnrpd 12699 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
65relogcld 25683 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
76, 4nndivred 11957 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℝ)
82, 7fsumrecl 15374 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ)
9 remulcl 10887 . . . . 5 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
101, 8, 9sylancr 586 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
11 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
12 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
13 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
14 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
15 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
16 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
17 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
18 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
19 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
20 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
21 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
22 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
23 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
24 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
25 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
2611, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25pntlemb 26650 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2726simp1d 1140 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2827relogcld 25683 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ)
29 peano2re 11078 . . . . . 6 ((log‘𝑍) ∈ ℝ → ((log‘𝑍) + 1) ∈ ℝ)
3028, 29syl 17 . . . . 5 (𝜑 → ((log‘𝑍) + 1) ∈ ℝ)
3130resqcld 13893 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ∈ ℝ)
32 3re 11983 . . . . . 6 3 ∈ ℝ
33 readdcl 10885 . . . . . 6 (((log‘𝑍) ∈ ℝ ∧ 3 ∈ ℝ) → ((log‘𝑍) + 3) ∈ ℝ)
3428, 32, 33sylancl 585 . . . . 5 (𝜑 → ((log‘𝑍) + 3) ∈ ℝ)
3534, 28remulcld 10936 . . . 4 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) ∈ ℝ)
3627rpred 12701 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℝ)
3721simpld 494 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
3836, 37rerpdivcld 12732 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
39 1red 10907 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
4027rpsqrtcld 15051 . . . . . . . . . . . 12 (𝜑 → (√‘𝑍) ∈ ℝ+)
4140rpred 12701 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ∈ ℝ)
42 ere 15726 . . . . . . . . . . . . 13 e ∈ ℝ
4342a1i 11 . . . . . . . . . . . 12 (𝜑 → e ∈ ℝ)
44 1re 10906 . . . . . . . . . . . . . 14 1 ∈ ℝ
45 1lt2 12074 . . . . . . . . . . . . . . 15 1 < 2
46 egt2lt3 15843 . . . . . . . . . . . . . . . 16 (2 < e ∧ e < 3)
4746simpli 483 . . . . . . . . . . . . . . 15 2 < e
4844, 1, 42lttri 11031 . . . . . . . . . . . . . . 15 ((1 < 2 ∧ 2 < e) → 1 < e)
4945, 47, 48mp2an 688 . . . . . . . . . . . . . 14 1 < e
5044, 42, 49ltleii 11028 . . . . . . . . . . . . 13 1 ≤ e
5150a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ≤ e)
5226simp2d 1141 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5352simp2d 1141 . . . . . . . . . . . 12 (𝜑 → e ≤ (√‘𝑍))
5439, 43, 41, 51, 53letrd 11062 . . . . . . . . . . 11 (𝜑 → 1 ≤ (√‘𝑍))
5552simp3d 1142 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑌))
5639, 41, 38, 54, 55letrd 11062 . . . . . . . . . 10 (𝜑 → 1 ≤ (𝑍 / 𝑌))
57 flge1nn 13469 . . . . . . . . . 10 (((𝑍 / 𝑌) ∈ ℝ ∧ 1 ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5838, 56, 57syl2anc 583 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5958nnrpd 12699 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ+)
6059relogcld 25683 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ∈ ℝ)
6160, 39readdcld 10935 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ∈ ℝ)
6261resqcld 13893 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ)
63 logdivbnd 26609 . . . . . . 7 ((⌊‘(𝑍 / 𝑌)) ∈ ℕ → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
6458, 63syl 17 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
651a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
66 2pos 12006 . . . . . . . 8 0 < 2
6766a1i 11 . . . . . . 7 (𝜑 → 0 < 2)
68 lemuldiv2 11786 . . . . . . 7 ((Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ ∧ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
698, 62, 65, 67, 68syl112anc 1372 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
7064, 69mpbird 256 . . . . 5 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2))
71 reflcl 13444 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
7238, 71syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
73 flle 13447 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7438, 73syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7521simprd 495 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑌)
76 1rp 12663 . . . . . . . . . . . . 13 1 ∈ ℝ+
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ+)
7877, 37, 27lediv2d 12725 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑌 ↔ (𝑍 / 𝑌) ≤ (𝑍 / 1)))
7975, 78mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ≤ (𝑍 / 1))
8036recnd 10934 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℂ)
8180div1d 11673 . . . . . . . . . 10 (𝜑 → (𝑍 / 1) = 𝑍)
8279, 81breqtrd 5096 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑌) ≤ 𝑍)
8372, 38, 36, 74, 82letrd 11062 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ 𝑍)
8459, 27logled 25687 . . . . . . . 8 (𝜑 → ((⌊‘(𝑍 / 𝑌)) ≤ 𝑍 ↔ (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍)))
8583, 84mpbid 231 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍))
8660, 28, 39, 85leadd1dd 11519 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1))
87 0red 10909 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
88 log1 25646 . . . . . . . . 9 (log‘1) = 0
8958nnge1d 11951 . . . . . . . . . 10 (𝜑 → 1 ≤ (⌊‘(𝑍 / 𝑌)))
90 logleb 25663 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℝ+) → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9176, 59, 90sylancr 586 . . . . . . . . . 10 (𝜑 → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9289, 91mpbid 231 . . . . . . . . 9 (𝜑 → (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9388, 92eqbrtrrid 5106 . . . . . . . 8 (𝜑 → 0 ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9460lep1d 11836 . . . . . . . 8 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9587, 60, 61, 93, 94letrd 11062 . . . . . . 7 (𝜑 → 0 ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9687, 61, 30, 95, 86letrd 11062 . . . . . . 7 (𝜑 → 0 ≤ ((log‘𝑍) + 1))
9761, 30, 95, 96le2sqd 13902 . . . . . 6 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1) ↔ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2)))
9886, 97mpbid 231 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2))
9910, 62, 31, 70, 98letrd 11062 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 1)↑2))
10028resqcld 13893 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ)
10165, 28remulcld 10936 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℝ)
102100, 101readdcld 10935 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + (2 · (log‘𝑍))) ∈ ℝ)
103 loge 25647 . . . . . . 7 (log‘e) = 1
10440rpge0d 12705 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘𝑍))
10541, 41, 104, 54lemulge12d 11843 . . . . . . . . . 10 (𝜑 → (√‘𝑍) ≤ ((√‘𝑍) · (√‘𝑍)))
10627rprege0d 12708 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
107 remsqsqrt 14896 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
108106, 107syl 17 . . . . . . . . . 10 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
109105, 108breqtrd 5096 . . . . . . . . 9 (𝜑 → (√‘𝑍) ≤ 𝑍)
11043, 41, 36, 53, 109letrd 11062 . . . . . . . 8 (𝜑 → e ≤ 𝑍)
111 epr 15845 . . . . . . . . 9 e ∈ ℝ+
112 logleb 25663 . . . . . . . . 9 ((e ∈ ℝ+𝑍 ∈ ℝ+) → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
113111, 27, 112sylancr 586 . . . . . . . 8 (𝜑 → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
114110, 113mpbid 231 . . . . . . 7 (𝜑 → (log‘e) ≤ (log‘𝑍))
115103, 114eqbrtrrid 5106 . . . . . 6 (𝜑 → 1 ≤ (log‘𝑍))
11639, 28, 102, 115leadd2dd 11520 . . . . 5 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1) ≤ ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
11728recnd 10934 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
118 binom21 13862 . . . . . 6 ((log‘𝑍) ∈ ℂ → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
119117, 118syl 17 . . . . 5 (𝜑 → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
120117sqvald 13789 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
121 df-3 11967 . . . . . . . . . 10 3 = (2 + 1)
122121oveq1i 7265 . . . . . . . . 9 (3 · (log‘𝑍)) = ((2 + 1) · (log‘𝑍))
123 2cnd 11981 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
124 1cnd 10901 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
125123, 124, 117adddird 10931 . . . . . . . . 9 (𝜑 → ((2 + 1) · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
126122, 125syl5eq 2791 . . . . . . . 8 (𝜑 → (3 · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
127117mulid2d 10924 . . . . . . . . 9 (𝜑 → (1 · (log‘𝑍)) = (log‘𝑍))
128127oveq2d 7271 . . . . . . . 8 (𝜑 → ((2 · (log‘𝑍)) + (1 · (log‘𝑍))) = ((2 · (log‘𝑍)) + (log‘𝑍)))
129126, 128eqtr2d 2779 . . . . . . 7 (𝜑 → ((2 · (log‘𝑍)) + (log‘𝑍)) = (3 · (log‘𝑍)))
130120, 129oveq12d 7273 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
131117sqcld 13790 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℂ)
132 2cn 11978 . . . . . . . 8 2 ∈ ℂ
133 mulcl 10886 . . . . . . . 8 ((2 ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) → (2 · (log‘𝑍)) ∈ ℂ)
134132, 117, 133sylancr 586 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℂ)
135131, 134, 117addassd 10928 . . . . . 6 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)) = (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))))
136 3cn 11984 . . . . . . . 8 3 ∈ ℂ
137136a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℂ)
138117, 137, 117adddird 10931 . . . . . 6 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
139130, 135, 1383eqtr4rd 2789 . . . . 5 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
140116, 119, 1393brtr4d 5102 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14110, 31, 35, 99, 140letrd 11062 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14210, 35, 17lemul2d 12745 . . 3 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)) ↔ (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍)))))
143141, 142mpbid 231 . 2 (𝜑 → (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
14417rpred 12701 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
145144adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ)
146145recnd 10934 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℂ)
1476recnd 10934 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ)
1485rpcnne0d 12710 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
149 div23 11582 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = ((𝑈 / 𝑛) · (log‘𝑛)))
150 divass 11581 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = (𝑈 · ((log‘𝑛) / 𝑛)))
151149, 150eqtr3d 2780 . . . . . . 7 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
152146, 147, 148, 151syl3anc 1369 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
153152sumeq2dv 15343 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
154144recnd 10934 . . . . . 6 (𝜑𝑈 ∈ ℂ)
1557recnd 10934 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℂ)
1562, 154, 155fsummulc2 15424 . . . . 5 (𝜑 → (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
157153, 156eqtr4d 2781 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)))
158157oveq2d 7271 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
1598recnd 10934 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℂ)
160123, 154, 159mul12d 11114 . . 3 (𝜑 → (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
161158, 160eqtrd 2778 . 2 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
16234recnd 10934 . . 3 (𝜑 → ((log‘𝑍) + 3) ∈ ℂ)
163154, 162, 117mulassd 10929 . 2 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) = (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
164143, 161, 1633brtr4d 5102 1 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  cdc 12366  +crp 12659  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  ...cfz 13168  cfl 13438  cexp 13710  csqrt 14872  abscabs 14873  Σcsu 15325  expce 15699  eceu 15700  logclog 25615  ψcchp 26147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-atan 25922  df-em 26047
This theorem is referenced by:  pntlemo  26660
  Copyright terms: Public domain W3C validator