MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemk Structured version   Visualization version   GIF version

Theorem pntlemk 26182
Description: Lemma for pnt 26190. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Assertion
Ref Expression
pntlemk (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝑢,𝐿   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemk
StepHypRef Expression
1 2re 11712 . . . . 5 2 ∈ ℝ
2 fzfid 13342 . . . . . 6 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
3 elfznn 12937 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
43adantl 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
54nnrpd 12430 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
65relogcld 25206 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
76, 4nndivred 11692 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℝ)
82, 7fsumrecl 15091 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ)
9 remulcl 10622 . . . . 5 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
101, 8, 9sylancr 589 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
11 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
12 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
13 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
14 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
15 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
16 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
17 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
18 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
19 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
20 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
21 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
22 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
23 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
24 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
25 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
2611, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25pntlemb 26173 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2726simp1d 1138 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2827relogcld 25206 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ)
29 peano2re 10813 . . . . . 6 ((log‘𝑍) ∈ ℝ → ((log‘𝑍) + 1) ∈ ℝ)
3028, 29syl 17 . . . . 5 (𝜑 → ((log‘𝑍) + 1) ∈ ℝ)
3130resqcld 13612 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ∈ ℝ)
32 3re 11718 . . . . . 6 3 ∈ ℝ
33 readdcl 10620 . . . . . 6 (((log‘𝑍) ∈ ℝ ∧ 3 ∈ ℝ) → ((log‘𝑍) + 3) ∈ ℝ)
3428, 32, 33sylancl 588 . . . . 5 (𝜑 → ((log‘𝑍) + 3) ∈ ℝ)
3534, 28remulcld 10671 . . . 4 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) ∈ ℝ)
3627rpred 12432 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℝ)
3721simpld 497 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
3836, 37rerpdivcld 12463 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
39 1red 10642 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
4027rpsqrtcld 14771 . . . . . . . . . . . 12 (𝜑 → (√‘𝑍) ∈ ℝ+)
4140rpred 12432 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ∈ ℝ)
42 ere 15442 . . . . . . . . . . . . 13 e ∈ ℝ
4342a1i 11 . . . . . . . . . . . 12 (𝜑 → e ∈ ℝ)
44 1re 10641 . . . . . . . . . . . . . 14 1 ∈ ℝ
45 1lt2 11809 . . . . . . . . . . . . . . 15 1 < 2
46 egt2lt3 15559 . . . . . . . . . . . . . . . 16 (2 < e ∧ e < 3)
4746simpli 486 . . . . . . . . . . . . . . 15 2 < e
4844, 1, 42lttri 10766 . . . . . . . . . . . . . . 15 ((1 < 2 ∧ 2 < e) → 1 < e)
4945, 47, 48mp2an 690 . . . . . . . . . . . . . 14 1 < e
5044, 42, 49ltleii 10763 . . . . . . . . . . . . 13 1 ≤ e
5150a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ≤ e)
5226simp2d 1139 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5352simp2d 1139 . . . . . . . . . . . 12 (𝜑 → e ≤ (√‘𝑍))
5439, 43, 41, 51, 53letrd 10797 . . . . . . . . . . 11 (𝜑 → 1 ≤ (√‘𝑍))
5552simp3d 1140 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑌))
5639, 41, 38, 54, 55letrd 10797 . . . . . . . . . 10 (𝜑 → 1 ≤ (𝑍 / 𝑌))
57 flge1nn 13192 . . . . . . . . . 10 (((𝑍 / 𝑌) ∈ ℝ ∧ 1 ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5838, 56, 57syl2anc 586 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5958nnrpd 12430 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ+)
6059relogcld 25206 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ∈ ℝ)
6160, 39readdcld 10670 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ∈ ℝ)
6261resqcld 13612 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ)
63 logdivbnd 26132 . . . . . . 7 ((⌊‘(𝑍 / 𝑌)) ∈ ℕ → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
6458, 63syl 17 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
651a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
66 2pos 11741 . . . . . . . 8 0 < 2
6766a1i 11 . . . . . . 7 (𝜑 → 0 < 2)
68 lemuldiv2 11521 . . . . . . 7 ((Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ ∧ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
698, 62, 65, 67, 68syl112anc 1370 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
7064, 69mpbird 259 . . . . 5 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2))
71 reflcl 13167 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
7238, 71syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
73 flle 13170 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7438, 73syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7521simprd 498 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑌)
76 1rp 12394 . . . . . . . . . . . . 13 1 ∈ ℝ+
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ+)
7877, 37, 27lediv2d 12456 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑌 ↔ (𝑍 / 𝑌) ≤ (𝑍 / 1)))
7975, 78mpbid 234 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ≤ (𝑍 / 1))
8036recnd 10669 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℂ)
8180div1d 11408 . . . . . . . . . 10 (𝜑 → (𝑍 / 1) = 𝑍)
8279, 81breqtrd 5092 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑌) ≤ 𝑍)
8372, 38, 36, 74, 82letrd 10797 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ 𝑍)
8459, 27logled 25210 . . . . . . . 8 (𝜑 → ((⌊‘(𝑍 / 𝑌)) ≤ 𝑍 ↔ (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍)))
8583, 84mpbid 234 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍))
8660, 28, 39, 85leadd1dd 11254 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1))
87 0red 10644 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
88 log1 25169 . . . . . . . . 9 (log‘1) = 0
8958nnge1d 11686 . . . . . . . . . 10 (𝜑 → 1 ≤ (⌊‘(𝑍 / 𝑌)))
90 logleb 25186 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℝ+) → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9176, 59, 90sylancr 589 . . . . . . . . . 10 (𝜑 → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9289, 91mpbid 234 . . . . . . . . 9 (𝜑 → (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9388, 92eqbrtrrid 5102 . . . . . . . 8 (𝜑 → 0 ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9460lep1d 11571 . . . . . . . 8 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9587, 60, 61, 93, 94letrd 10797 . . . . . . 7 (𝜑 → 0 ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9687, 61, 30, 95, 86letrd 10797 . . . . . . 7 (𝜑 → 0 ≤ ((log‘𝑍) + 1))
9761, 30, 95, 96le2sqd 13621 . . . . . 6 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1) ↔ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2)))
9886, 97mpbid 234 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2))
9910, 62, 31, 70, 98letrd 10797 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 1)↑2))
10028resqcld 13612 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ)
10165, 28remulcld 10671 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℝ)
102100, 101readdcld 10670 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + (2 · (log‘𝑍))) ∈ ℝ)
103 loge 25170 . . . . . . 7 (log‘e) = 1
10440rpge0d 12436 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘𝑍))
10541, 41, 104, 54lemulge12d 11578 . . . . . . . . . 10 (𝜑 → (√‘𝑍) ≤ ((√‘𝑍) · (√‘𝑍)))
10627rprege0d 12439 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
107 remsqsqrt 14616 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
108106, 107syl 17 . . . . . . . . . 10 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
109105, 108breqtrd 5092 . . . . . . . . 9 (𝜑 → (√‘𝑍) ≤ 𝑍)
11043, 41, 36, 53, 109letrd 10797 . . . . . . . 8 (𝜑 → e ≤ 𝑍)
111 epr 15561 . . . . . . . . 9 e ∈ ℝ+
112 logleb 25186 . . . . . . . . 9 ((e ∈ ℝ+𝑍 ∈ ℝ+) → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
113111, 27, 112sylancr 589 . . . . . . . 8 (𝜑 → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
114110, 113mpbid 234 . . . . . . 7 (𝜑 → (log‘e) ≤ (log‘𝑍))
115103, 114eqbrtrrid 5102 . . . . . 6 (𝜑 → 1 ≤ (log‘𝑍))
11639, 28, 102, 115leadd2dd 11255 . . . . 5 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1) ≤ ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
11728recnd 10669 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
118 binom21 13581 . . . . . 6 ((log‘𝑍) ∈ ℂ → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
119117, 118syl 17 . . . . 5 (𝜑 → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
120117sqvald 13508 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
121 df-3 11702 . . . . . . . . . 10 3 = (2 + 1)
122121oveq1i 7166 . . . . . . . . 9 (3 · (log‘𝑍)) = ((2 + 1) · (log‘𝑍))
123 2cnd 11716 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
124 1cnd 10636 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
125123, 124, 117adddird 10666 . . . . . . . . 9 (𝜑 → ((2 + 1) · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
126122, 125syl5eq 2868 . . . . . . . 8 (𝜑 → (3 · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
127117mulid2d 10659 . . . . . . . . 9 (𝜑 → (1 · (log‘𝑍)) = (log‘𝑍))
128127oveq2d 7172 . . . . . . . 8 (𝜑 → ((2 · (log‘𝑍)) + (1 · (log‘𝑍))) = ((2 · (log‘𝑍)) + (log‘𝑍)))
129126, 128eqtr2d 2857 . . . . . . 7 (𝜑 → ((2 · (log‘𝑍)) + (log‘𝑍)) = (3 · (log‘𝑍)))
130120, 129oveq12d 7174 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
131117sqcld 13509 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℂ)
132 2cn 11713 . . . . . . . 8 2 ∈ ℂ
133 mulcl 10621 . . . . . . . 8 ((2 ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) → (2 · (log‘𝑍)) ∈ ℂ)
134132, 117, 133sylancr 589 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℂ)
135131, 134, 117addassd 10663 . . . . . 6 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)) = (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))))
136 3cn 11719 . . . . . . . 8 3 ∈ ℂ
137136a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℂ)
138117, 137, 117adddird 10666 . . . . . 6 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
139130, 135, 1383eqtr4rd 2867 . . . . 5 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
140116, 119, 1393brtr4d 5098 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14110, 31, 35, 99, 140letrd 10797 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14210, 35, 17lemul2d 12476 . . 3 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)) ↔ (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍)))))
143141, 142mpbid 234 . 2 (𝜑 → (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
14417rpred 12432 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
145144adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ)
146145recnd 10669 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℂ)
1476recnd 10669 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ)
1485rpcnne0d 12441 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
149 div23 11317 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = ((𝑈 / 𝑛) · (log‘𝑛)))
150 divass 11316 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = (𝑈 · ((log‘𝑛) / 𝑛)))
151149, 150eqtr3d 2858 . . . . . . 7 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
152146, 147, 148, 151syl3anc 1367 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
153152sumeq2dv 15060 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
154144recnd 10669 . . . . . 6 (𝜑𝑈 ∈ ℂ)
1557recnd 10669 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℂ)
1562, 154, 155fsummulc2 15139 . . . . 5 (𝜑 → (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
157153, 156eqtr4d 2859 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)))
158157oveq2d 7172 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
1598recnd 10669 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℂ)
160123, 154, 159mul12d 10849 . . 3 (𝜑 → (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
161158, 160eqtrd 2856 . 2 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
16234recnd 10669 . . 3 (𝜑 → ((log‘𝑍) + 3) ∈ ℂ)
163154, 162, 117mulassd 10664 . 2 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) = (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
164143, 161, 1633brtr4d 5098 1 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  4c4 11695  cdc 12099  +crp 12390  (,)cioo 12739  [,)cico 12741  [,]cicc 12742  ...cfz 12893  cfl 13161  cexp 13430  csqrt 14592  abscabs 14593  Σcsu 15042  expce 15415  eceu 15416  logclog 25138  ψcchp 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-e 15422  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-dvds 15608  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-ulm 24965  df-log 25140  df-atan 25445  df-em 25570
This theorem is referenced by:  pntlemo  26183
  Copyright terms: Public domain W3C validator