MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemk Structured version   Visualization version   GIF version

Theorem pntlemk 26954
Description: Lemma for pnt 26962. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Assertion
Ref Expression
pntlemk (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝑢,𝐿   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemk
StepHypRef Expression
1 2re 12227 . . . . 5 2 ∈ ℝ
2 fzfid 13878 . . . . . 6 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
3 elfznn 13470 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
43adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
54nnrpd 12955 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
65relogcld 25978 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
76, 4nndivred 12207 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℝ)
82, 7fsumrecl 15619 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ)
9 remulcl 11136 . . . . 5 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
101, 8, 9sylancr 587 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
11 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
12 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
13 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
14 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
15 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
16 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
17 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
18 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
19 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
20 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
21 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
22 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
23 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
24 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
25 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
2611, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25pntlemb 26945 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2726simp1d 1142 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2827relogcld 25978 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ)
29 peano2re 11328 . . . . . 6 ((log‘𝑍) ∈ ℝ → ((log‘𝑍) + 1) ∈ ℝ)
3028, 29syl 17 . . . . 5 (𝜑 → ((log‘𝑍) + 1) ∈ ℝ)
3130resqcld 14030 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ∈ ℝ)
32 3re 12233 . . . . . 6 3 ∈ ℝ
33 readdcl 11134 . . . . . 6 (((log‘𝑍) ∈ ℝ ∧ 3 ∈ ℝ) → ((log‘𝑍) + 3) ∈ ℝ)
3428, 32, 33sylancl 586 . . . . 5 (𝜑 → ((log‘𝑍) + 3) ∈ ℝ)
3534, 28remulcld 11185 . . . 4 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) ∈ ℝ)
3627rpred 12957 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℝ)
3721simpld 495 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
3836, 37rerpdivcld 12988 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
39 1red 11156 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
4027rpsqrtcld 15296 . . . . . . . . . . . 12 (𝜑 → (√‘𝑍) ∈ ℝ+)
4140rpred 12957 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ∈ ℝ)
42 ere 15971 . . . . . . . . . . . . 13 e ∈ ℝ
4342a1i 11 . . . . . . . . . . . 12 (𝜑 → e ∈ ℝ)
44 1re 11155 . . . . . . . . . . . . . 14 1 ∈ ℝ
45 1lt2 12324 . . . . . . . . . . . . . . 15 1 < 2
46 egt2lt3 16088 . . . . . . . . . . . . . . . 16 (2 < e ∧ e < 3)
4746simpli 484 . . . . . . . . . . . . . . 15 2 < e
4844, 1, 42lttri 11281 . . . . . . . . . . . . . . 15 ((1 < 2 ∧ 2 < e) → 1 < e)
4945, 47, 48mp2an 690 . . . . . . . . . . . . . 14 1 < e
5044, 42, 49ltleii 11278 . . . . . . . . . . . . 13 1 ≤ e
5150a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ≤ e)
5226simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5352simp2d 1143 . . . . . . . . . . . 12 (𝜑 → e ≤ (√‘𝑍))
5439, 43, 41, 51, 53letrd 11312 . . . . . . . . . . 11 (𝜑 → 1 ≤ (√‘𝑍))
5552simp3d 1144 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑌))
5639, 41, 38, 54, 55letrd 11312 . . . . . . . . . 10 (𝜑 → 1 ≤ (𝑍 / 𝑌))
57 flge1nn 13726 . . . . . . . . . 10 (((𝑍 / 𝑌) ∈ ℝ ∧ 1 ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5838, 56, 57syl2anc 584 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5958nnrpd 12955 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ+)
6059relogcld 25978 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ∈ ℝ)
6160, 39readdcld 11184 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ∈ ℝ)
6261resqcld 14030 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ)
63 logdivbnd 26904 . . . . . . 7 ((⌊‘(𝑍 / 𝑌)) ∈ ℕ → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
6458, 63syl 17 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
651a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
66 2pos 12256 . . . . . . . 8 0 < 2
6766a1i 11 . . . . . . 7 (𝜑 → 0 < 2)
68 lemuldiv2 12036 . . . . . . 7 ((Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ ∧ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
698, 62, 65, 67, 68syl112anc 1374 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
7064, 69mpbird 256 . . . . 5 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2))
71 reflcl 13701 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
7238, 71syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
73 flle 13704 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7438, 73syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7521simprd 496 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑌)
76 1rp 12919 . . . . . . . . . . . . 13 1 ∈ ℝ+
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ+)
7877, 37, 27lediv2d 12981 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑌 ↔ (𝑍 / 𝑌) ≤ (𝑍 / 1)))
7975, 78mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ≤ (𝑍 / 1))
8036recnd 11183 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℂ)
8180div1d 11923 . . . . . . . . . 10 (𝜑 → (𝑍 / 1) = 𝑍)
8279, 81breqtrd 5131 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑌) ≤ 𝑍)
8372, 38, 36, 74, 82letrd 11312 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ 𝑍)
8459, 27logled 25982 . . . . . . . 8 (𝜑 → ((⌊‘(𝑍 / 𝑌)) ≤ 𝑍 ↔ (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍)))
8583, 84mpbid 231 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍))
8660, 28, 39, 85leadd1dd 11769 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1))
87 0red 11158 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
88 log1 25941 . . . . . . . . 9 (log‘1) = 0
8958nnge1d 12201 . . . . . . . . . 10 (𝜑 → 1 ≤ (⌊‘(𝑍 / 𝑌)))
90 logleb 25958 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℝ+) → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9176, 59, 90sylancr 587 . . . . . . . . . 10 (𝜑 → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9289, 91mpbid 231 . . . . . . . . 9 (𝜑 → (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9388, 92eqbrtrrid 5141 . . . . . . . 8 (𝜑 → 0 ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9460lep1d 12086 . . . . . . . 8 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9587, 60, 61, 93, 94letrd 11312 . . . . . . 7 (𝜑 → 0 ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9687, 61, 30, 95, 86letrd 11312 . . . . . . 7 (𝜑 → 0 ≤ ((log‘𝑍) + 1))
9761, 30, 95, 96le2sqd 14160 . . . . . 6 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1) ↔ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2)))
9886, 97mpbid 231 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2))
9910, 62, 31, 70, 98letrd 11312 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 1)↑2))
10028resqcld 14030 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ)
10165, 28remulcld 11185 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℝ)
102100, 101readdcld 11184 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + (2 · (log‘𝑍))) ∈ ℝ)
103 loge 25942 . . . . . . 7 (log‘e) = 1
10440rpge0d 12961 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘𝑍))
10541, 41, 104, 54lemulge12d 12093 . . . . . . . . . 10 (𝜑 → (√‘𝑍) ≤ ((√‘𝑍) · (√‘𝑍)))
10627rprege0d 12964 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
107 remsqsqrt 15141 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
108106, 107syl 17 . . . . . . . . . 10 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
109105, 108breqtrd 5131 . . . . . . . . 9 (𝜑 → (√‘𝑍) ≤ 𝑍)
11043, 41, 36, 53, 109letrd 11312 . . . . . . . 8 (𝜑 → e ≤ 𝑍)
111 epr 16090 . . . . . . . . 9 e ∈ ℝ+
112 logleb 25958 . . . . . . . . 9 ((e ∈ ℝ+𝑍 ∈ ℝ+) → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
113111, 27, 112sylancr 587 . . . . . . . 8 (𝜑 → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
114110, 113mpbid 231 . . . . . . 7 (𝜑 → (log‘e) ≤ (log‘𝑍))
115103, 114eqbrtrrid 5141 . . . . . 6 (𝜑 → 1 ≤ (log‘𝑍))
11639, 28, 102, 115leadd2dd 11770 . . . . 5 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1) ≤ ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
11728recnd 11183 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
118 binom21 14122 . . . . . 6 ((log‘𝑍) ∈ ℂ → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
119117, 118syl 17 . . . . 5 (𝜑 → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
120117sqvald 14048 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
121 df-3 12217 . . . . . . . . . 10 3 = (2 + 1)
122121oveq1i 7367 . . . . . . . . 9 (3 · (log‘𝑍)) = ((2 + 1) · (log‘𝑍))
123 2cnd 12231 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
124 1cnd 11150 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
125123, 124, 117adddird 11180 . . . . . . . . 9 (𝜑 → ((2 + 1) · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
126122, 125eqtrid 2788 . . . . . . . 8 (𝜑 → (3 · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
127117mulid2d 11173 . . . . . . . . 9 (𝜑 → (1 · (log‘𝑍)) = (log‘𝑍))
128127oveq2d 7373 . . . . . . . 8 (𝜑 → ((2 · (log‘𝑍)) + (1 · (log‘𝑍))) = ((2 · (log‘𝑍)) + (log‘𝑍)))
129126, 128eqtr2d 2777 . . . . . . 7 (𝜑 → ((2 · (log‘𝑍)) + (log‘𝑍)) = (3 · (log‘𝑍)))
130120, 129oveq12d 7375 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
131117sqcld 14049 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℂ)
132 2cn 12228 . . . . . . . 8 2 ∈ ℂ
133 mulcl 11135 . . . . . . . 8 ((2 ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) → (2 · (log‘𝑍)) ∈ ℂ)
134132, 117, 133sylancr 587 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℂ)
135131, 134, 117addassd 11177 . . . . . 6 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)) = (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))))
136 3cn 12234 . . . . . . . 8 3 ∈ ℂ
137136a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℂ)
138117, 137, 117adddird 11180 . . . . . 6 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
139130, 135, 1383eqtr4rd 2787 . . . . 5 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
140116, 119, 1393brtr4d 5137 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14110, 31, 35, 99, 140letrd 11312 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14210, 35, 17lemul2d 13001 . . 3 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)) ↔ (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍)))))
143141, 142mpbid 231 . 2 (𝜑 → (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
14417rpred 12957 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
145144adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ)
146145recnd 11183 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℂ)
1476recnd 11183 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ)
1485rpcnne0d 12966 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
149 div23 11832 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = ((𝑈 / 𝑛) · (log‘𝑛)))
150 divass 11831 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = (𝑈 · ((log‘𝑛) / 𝑛)))
151149, 150eqtr3d 2778 . . . . . . 7 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
152146, 147, 148, 151syl3anc 1371 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
153152sumeq2dv 15588 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
154144recnd 11183 . . . . . 6 (𝜑𝑈 ∈ ℂ)
1557recnd 11183 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℂ)
1562, 154, 155fsummulc2 15669 . . . . 5 (𝜑 → (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
157153, 156eqtr4d 2779 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)))
158157oveq2d 7373 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
1598recnd 11183 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℂ)
160123, 154, 159mul12d 11364 . . 3 (𝜑 → (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
161158, 160eqtrd 2776 . 2 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
16234recnd 11183 . . 3 (𝜑 → ((log‘𝑍) + 3) ∈ ℂ)
163154, 162, 117mulassd 11178 . 2 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) = (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
164143, 161, 1633brtr4d 5137 1 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  4c4 12210  cdc 12618  +crp 12915  (,)cioo 13264  [,)cico 13266  [,]cicc 13267  ...cfz 13424  cfl 13695  cexp 13967  csqrt 15118  abscabs 15119  Σcsu 15570  expce 15944  eceu 15945  logclog 25910  ψcchp 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-atan 26217  df-em 26342
This theorem is referenced by:  pntlemo  26955
  Copyright terms: Public domain W3C validator