Proof of Theorem pntlemk
Step | Hyp | Ref
| Expression |
1 | | 2re 11977 |
. . . . 5
⊢ 2 ∈
ℝ |
2 | | fzfid 13621 |
. . . . . 6
⊢ (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin) |
3 | | elfznn 13214 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌))) → 𝑛 ∈
ℕ) |
4 | 3 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ) |
5 | 4 | nnrpd 12699 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+) |
6 | 5 | relogcld 25683 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ) |
7 | 6, 4 | nndivred 11957 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℝ) |
8 | 2, 7 | fsumrecl 15374 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ) |
9 | | remulcl 10887 |
. . . . 5
⊢ ((2
∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ) → (2 ·
Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ) |
10 | 1, 8, 9 | sylancr 586 |
. . . 4
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ) |
11 | | pntlem1.r |
. . . . . . . . 9
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
12 | | pntlem1.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
13 | | pntlem1.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
14 | | pntlem1.l |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
15 | | pntlem1.d |
. . . . . . . . 9
⊢ 𝐷 = (𝐴 + 1) |
16 | | pntlem1.f |
. . . . . . . . 9
⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
17 | | pntlem1.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈
ℝ+) |
18 | | pntlem1.u2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ≤ 𝐴) |
19 | | pntlem1.e |
. . . . . . . . 9
⊢ 𝐸 = (𝑈 / 𝐷) |
20 | | pntlem1.k |
. . . . . . . . 9
⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
21 | | pntlem1.y |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤
𝑌)) |
22 | | pntlem1.x |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
23 | | pntlem1.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
24 | | pntlem1.w |
. . . . . . . . 9
⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
25 | | pntlem1.z |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) |
26 | 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | pntlemb 26650 |
. . . . . . . 8
⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 <
𝑍 ∧ e ≤
(√‘𝑍) ∧
(√‘𝑍) ≤
(𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
27 | 26 | simp1d 1140 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈
ℝ+) |
28 | 27 | relogcld 25683 |
. . . . . 6
⊢ (𝜑 → (log‘𝑍) ∈
ℝ) |
29 | | peano2re 11078 |
. . . . . 6
⊢
((log‘𝑍)
∈ ℝ → ((log‘𝑍) + 1) ∈ ℝ) |
30 | 28, 29 | syl 17 |
. . . . 5
⊢ (𝜑 → ((log‘𝑍) + 1) ∈
ℝ) |
31 | 30 | resqcld 13893 |
. . . 4
⊢ (𝜑 → (((log‘𝑍) + 1)↑2) ∈
ℝ) |
32 | | 3re 11983 |
. . . . . 6
⊢ 3 ∈
ℝ |
33 | | readdcl 10885 |
. . . . . 6
⊢
(((log‘𝑍)
∈ ℝ ∧ 3 ∈ ℝ) → ((log‘𝑍) + 3) ∈ ℝ) |
34 | 28, 32, 33 | sylancl 585 |
. . . . 5
⊢ (𝜑 → ((log‘𝑍) + 3) ∈
ℝ) |
35 | 34, 28 | remulcld 10936 |
. . . 4
⊢ (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) ∈
ℝ) |
36 | 27 | rpred 12701 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ ℝ) |
37 | 21 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
38 | 36, 37 | rerpdivcld 12732 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍 / 𝑌) ∈ ℝ) |
39 | | 1red 10907 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℝ) |
40 | 27 | rpsqrtcld 15051 |
. . . . . . . . . . . 12
⊢ (𝜑 → (√‘𝑍) ∈
ℝ+) |
41 | 40 | rpred 12701 |
. . . . . . . . . . 11
⊢ (𝜑 → (√‘𝑍) ∈
ℝ) |
42 | | ere 15726 |
. . . . . . . . . . . . 13
⊢ e ∈
ℝ |
43 | 42 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → e ∈
ℝ) |
44 | | 1re 10906 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
45 | | 1lt2 12074 |
. . . . . . . . . . . . . . 15
⊢ 1 <
2 |
46 | | egt2lt3 15843 |
. . . . . . . . . . . . . . . 16
⊢ (2 < e
∧ e < 3) |
47 | 46 | simpli 483 |
. . . . . . . . . . . . . . 15
⊢ 2 <
e |
48 | 44, 1, 42 | lttri 11031 |
. . . . . . . . . . . . . . 15
⊢ ((1 <
2 ∧ 2 < e) → 1 < e) |
49 | 45, 47, 48 | mp2an 688 |
. . . . . . . . . . . . . 14
⊢ 1 <
e |
50 | 44, 42, 49 | ltleii 11028 |
. . . . . . . . . . . . 13
⊢ 1 ≤
e |
51 | 50 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ e) |
52 | 26 | simp2d 1141 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌))) |
53 | 52 | simp2d 1141 |
. . . . . . . . . . . 12
⊢ (𝜑 → e ≤
(√‘𝑍)) |
54 | 39, 43, 41, 51, 53 | letrd 11062 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ≤
(√‘𝑍)) |
55 | 52 | simp3d 1142 |
. . . . . . . . . . 11
⊢ (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑌)) |
56 | 39, 41, 38, 54, 55 | letrd 11062 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ≤ (𝑍 / 𝑌)) |
57 | | flge1nn 13469 |
. . . . . . . . . 10
⊢ (((𝑍 / 𝑌) ∈ ℝ ∧ 1 ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / 𝑌)) ∈ ℕ) |
58 | 38, 56, 57 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℕ) |
59 | 58 | nnrpd 12699 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈
ℝ+) |
60 | 59 | relogcld 25683 |
. . . . . . 7
⊢ (𝜑 →
(log‘(⌊‘(𝑍 / 𝑌))) ∈ ℝ) |
61 | 60, 39 | readdcld 10935 |
. . . . . 6
⊢ (𝜑 →
((log‘(⌊‘(𝑍 / 𝑌))) + 1) ∈ ℝ) |
62 | 61 | resqcld 13893 |
. . . . 5
⊢ (𝜑 →
(((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈
ℝ) |
63 | | logdivbnd 26609 |
. . . . . . 7
⊢
((⌊‘(𝑍 /
𝑌)) ∈ ℕ →
Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)) |
64 | 58, 63 | syl 17 |
. . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)) |
65 | 1 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℝ) |
66 | | 2pos 12006 |
. . . . . . . 8
⊢ 0 <
2 |
67 | 66 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 < 2) |
68 | | lemuldiv2 11786 |
. . . . . . 7
⊢
((Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ ∧
(((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ ∧ (2
∈ ℝ ∧ 0 < 2)) → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))) |
69 | 8, 62, 65, 67, 68 | syl112anc 1372 |
. . . . . 6
⊢ (𝜑 → ((2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))) |
70 | 64, 69 | mpbird 256 |
. . . . 5
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2)) |
71 | | reflcl 13444 |
. . . . . . . . . 10
⊢ ((𝑍 / 𝑌) ∈ ℝ →
(⌊‘(𝑍 / 𝑌)) ∈
ℝ) |
72 | 38, 71 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ) |
73 | | flle 13447 |
. . . . . . . . . 10
⊢ ((𝑍 / 𝑌) ∈ ℝ →
(⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌)) |
74 | 38, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌)) |
75 | 21 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ≤ 𝑌) |
76 | | 1rp 12663 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
77 | 76 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ+) |
78 | 77, 37, 27 | lediv2d 12725 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ≤ 𝑌 ↔ (𝑍 / 𝑌) ≤ (𝑍 / 1))) |
79 | 75, 78 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍 / 𝑌) ≤ (𝑍 / 1)) |
80 | 36 | recnd 10934 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ ℂ) |
81 | 80 | div1d 11673 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍 / 1) = 𝑍) |
82 | 79, 81 | breqtrd 5096 |
. . . . . . . . 9
⊢ (𝜑 → (𝑍 / 𝑌) ≤ 𝑍) |
83 | 72, 38, 36, 74, 82 | letrd 11062 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ 𝑍) |
84 | 59, 27 | logled 25687 |
. . . . . . . 8
⊢ (𝜑 → ((⌊‘(𝑍 / 𝑌)) ≤ 𝑍 ↔ (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍))) |
85 | 83, 84 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 →
(log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍)) |
86 | 60, 28, 39, 85 | leadd1dd 11519 |
. . . . . 6
⊢ (𝜑 →
((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1)) |
87 | | 0red 10909 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
88 | | log1 25646 |
. . . . . . . . 9
⊢
(log‘1) = 0 |
89 | 58 | nnge1d 11951 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ≤
(⌊‘(𝑍 / 𝑌))) |
90 | | logleb 25663 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ+ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℝ+) → (1
≤ (⌊‘(𝑍 /
𝑌)) ↔ (log‘1)
≤ (log‘(⌊‘(𝑍 / 𝑌))))) |
91 | 76, 59, 90 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝜑 → (1 ≤
(⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤
(log‘(⌊‘(𝑍 / 𝑌))))) |
92 | 89, 91 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → (log‘1) ≤
(log‘(⌊‘(𝑍 / 𝑌)))) |
93 | 88, 92 | eqbrtrrid 5106 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤
(log‘(⌊‘(𝑍 / 𝑌)))) |
94 | 60 | lep1d 11836 |
. . . . . . . 8
⊢ (𝜑 →
(log‘(⌊‘(𝑍 / 𝑌))) ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1)) |
95 | 87, 60, 61, 93, 94 | letrd 11062 |
. . . . . . 7
⊢ (𝜑 → 0 ≤
((log‘(⌊‘(𝑍 / 𝑌))) + 1)) |
96 | 87, 61, 30, 95, 86 | letrd 11062 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ ((log‘𝑍) + 1)) |
97 | 61, 30, 95, 96 | le2sqd 13902 |
. . . . . 6
⊢ (𝜑 →
(((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1) ↔
(((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) +
1)↑2))) |
98 | 86, 97 | mpbid 231 |
. . . . 5
⊢ (𝜑 →
(((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2)) |
99 | 10, 62, 31, 70, 98 | letrd 11062 |
. . . 4
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 1)↑2)) |
100 | 28 | resqcld 13893 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝑍)↑2) ∈
ℝ) |
101 | 65, 28 | remulcld 10936 |
. . . . . . 7
⊢ (𝜑 → (2 ·
(log‘𝑍)) ∈
ℝ) |
102 | 100, 101 | readdcld 10935 |
. . . . . 6
⊢ (𝜑 → (((log‘𝑍)↑2) + (2 ·
(log‘𝑍))) ∈
ℝ) |
103 | | loge 25647 |
. . . . . . 7
⊢
(log‘e) = 1 |
104 | 40 | rpge0d 12705 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤
(√‘𝑍)) |
105 | 41, 41, 104, 54 | lemulge12d 11843 |
. . . . . . . . . 10
⊢ (𝜑 → (√‘𝑍) ≤ ((√‘𝑍) · (√‘𝑍))) |
106 | 27 | rprege0d 12708 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍)) |
107 | | remsqsqrt 14896 |
. . . . . . . . . . 11
⊢ ((𝑍 ∈ ℝ ∧ 0 ≤
𝑍) →
((√‘𝑍) ·
(√‘𝑍)) = 𝑍) |
108 | 106, 107 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍) |
109 | 105, 108 | breqtrd 5096 |
. . . . . . . . 9
⊢ (𝜑 → (√‘𝑍) ≤ 𝑍) |
110 | 43, 41, 36, 53, 109 | letrd 11062 |
. . . . . . . 8
⊢ (𝜑 → e ≤ 𝑍) |
111 | | epr 15845 |
. . . . . . . . 9
⊢ e ∈
ℝ+ |
112 | | logleb 25663 |
. . . . . . . . 9
⊢ ((e
∈ ℝ+ ∧ 𝑍 ∈ ℝ+) → (e ≤
𝑍 ↔ (log‘e) ≤
(log‘𝑍))) |
113 | 111, 27, 112 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍))) |
114 | 110, 113 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (log‘e) ≤
(log‘𝑍)) |
115 | 103, 114 | eqbrtrrid 5106 |
. . . . . 6
⊢ (𝜑 → 1 ≤ (log‘𝑍)) |
116 | 39, 28, 102, 115 | leadd2dd 11520 |
. . . . 5
⊢ (𝜑 → ((((log‘𝑍)↑2) + (2 ·
(log‘𝑍))) + 1) ≤
((((log‘𝑍)↑2) +
(2 · (log‘𝑍)))
+ (log‘𝑍))) |
117 | 28 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → (log‘𝑍) ∈
ℂ) |
118 | | binom21 13862 |
. . . . . 6
⊢
((log‘𝑍)
∈ ℂ → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 ·
(log‘𝑍))) +
1)) |
119 | 117, 118 | syl 17 |
. . . . 5
⊢ (𝜑 → (((log‘𝑍) + 1)↑2) =
((((log‘𝑍)↑2) +
(2 · (log‘𝑍)))
+ 1)) |
120 | 117 | sqvald 13789 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍))) |
121 | | df-3 11967 |
. . . . . . . . . 10
⊢ 3 = (2 +
1) |
122 | 121 | oveq1i 7265 |
. . . . . . . . 9
⊢ (3
· (log‘𝑍)) =
((2 + 1) · (log‘𝑍)) |
123 | | 2cnd 11981 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℂ) |
124 | | 1cnd 10901 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℂ) |
125 | 123, 124,
117 | adddird 10931 |
. . . . . . . . 9
⊢ (𝜑 → ((2 + 1) ·
(log‘𝑍)) = ((2
· (log‘𝑍)) +
(1 · (log‘𝑍)))) |
126 | 122, 125 | syl5eq 2791 |
. . . . . . . 8
⊢ (𝜑 → (3 ·
(log‘𝑍)) = ((2
· (log‘𝑍)) +
(1 · (log‘𝑍)))) |
127 | 117 | mulid2d 10924 |
. . . . . . . . 9
⊢ (𝜑 → (1 ·
(log‘𝑍)) =
(log‘𝑍)) |
128 | 127 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝜑 → ((2 ·
(log‘𝑍)) + (1
· (log‘𝑍))) =
((2 · (log‘𝑍))
+ (log‘𝑍))) |
129 | 126, 128 | eqtr2d 2779 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝑍)) +
(log‘𝑍)) = (3
· (log‘𝑍))) |
130 | 120, 129 | oveq12d 7273 |
. . . . . 6
⊢ (𝜑 → (((log‘𝑍)↑2) + ((2 ·
(log‘𝑍)) +
(log‘𝑍))) =
(((log‘𝑍) ·
(log‘𝑍)) + (3
· (log‘𝑍)))) |
131 | 117 | sqcld 13790 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝑍)↑2) ∈
ℂ) |
132 | | 2cn 11978 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
133 | | mulcl 10886 |
. . . . . . . 8
⊢ ((2
∈ ℂ ∧ (log‘𝑍) ∈ ℂ) → (2 ·
(log‘𝑍)) ∈
ℂ) |
134 | 132, 117,
133 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → (2 ·
(log‘𝑍)) ∈
ℂ) |
135 | 131, 134,
117 | addassd 10928 |
. . . . . 6
⊢ (𝜑 → ((((log‘𝑍)↑2) + (2 ·
(log‘𝑍))) +
(log‘𝑍)) =
(((log‘𝑍)↑2) +
((2 · (log‘𝑍))
+ (log‘𝑍)))) |
136 | | 3cn 11984 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
137 | 136 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 3 ∈
ℂ) |
138 | 117, 137,
117 | adddird 10931 |
. . . . . 6
⊢ (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = (((log‘𝑍) · (log‘𝑍)) + (3 ·
(log‘𝑍)))) |
139 | 130, 135,
138 | 3eqtr4rd 2789 |
. . . . 5
⊢ (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = ((((log‘𝑍)↑2) + (2 ·
(log‘𝑍))) +
(log‘𝑍))) |
140 | 116, 119,
139 | 3brtr4d 5102 |
. . . 4
⊢ (𝜑 → (((log‘𝑍) + 1)↑2) ≤
(((log‘𝑍) + 3)
· (log‘𝑍))) |
141 | 10, 31, 35, 99, 140 | letrd 11062 |
. . 3
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍))) |
142 | 10, 35, 17 | lemul2d 12745 |
. . 3
⊢ (𝜑 → ((2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)) ↔ (𝑈 · (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))) |
143 | 141, 142 | mpbid 231 |
. 2
⊢ (𝜑 → (𝑈 · (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍)))) |
144 | 17 | rpred 12701 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ ℝ) |
145 | 144 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ) |
146 | 145 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℂ) |
147 | 6 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ) |
148 | 5 | rpcnne0d 12710 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) |
149 | | div23 11582 |
. . . . . . . 8
⊢ ((𝑈 ∈ ℂ ∧
(log‘𝑛) ∈
ℂ ∧ (𝑛 ∈
ℂ ∧ 𝑛 ≠ 0))
→ ((𝑈 ·
(log‘𝑛)) / 𝑛) = ((𝑈 / 𝑛) · (log‘𝑛))) |
150 | | divass 11581 |
. . . . . . . 8
⊢ ((𝑈 ∈ ℂ ∧
(log‘𝑛) ∈
ℂ ∧ (𝑛 ∈
ℂ ∧ 𝑛 ≠ 0))
→ ((𝑈 ·
(log‘𝑛)) / 𝑛) = (𝑈 · ((log‘𝑛) / 𝑛))) |
151 | 149, 150 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝑈 ∈ ℂ ∧
(log‘𝑛) ∈
ℂ ∧ (𝑛 ∈
ℂ ∧ 𝑛 ≠ 0))
→ ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛))) |
152 | 146, 147,
148, 151 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛))) |
153 | 152 | sumeq2dv 15343 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛))) |
154 | 144 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℂ) |
155 | 7 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℂ) |
156 | 2, 154, 155 | fsummulc2 15424 |
. . . . 5
⊢ (𝜑 → (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛))) |
157 | 153, 156 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) |
158 | 157 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)))) |
159 | 8 | recnd 10934 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℂ) |
160 | 123, 154,
159 | mul12d 11114 |
. . 3
⊢ (𝜑 → (2 · (𝑈 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛))) = (𝑈 · (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛)))) |
161 | 158, 160 | eqtrd 2778 |
. 2
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (𝑈 · (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((log‘𝑛) / 𝑛)))) |
162 | 34 | recnd 10934 |
. . 3
⊢ (𝜑 → ((log‘𝑍) + 3) ∈
ℂ) |
163 | 154, 162,
117 | mulassd 10929 |
. 2
⊢ (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) = (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍)))) |
164 | 143, 161,
163 | 3brtr4d 5102 |
1
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍))) |