MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemk Structured version   Visualization version   GIF version

Theorem pntlemk 26754
Description: Lemma for pnt 26762. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Assertion
Ref Expression
pntlemk (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝑢,𝐿   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemk
StepHypRef Expression
1 2re 12047 . . . . 5 2 ∈ ℝ
2 fzfid 13693 . . . . . 6 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
3 elfznn 13285 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
43adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
54nnrpd 12770 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
65relogcld 25778 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
76, 4nndivred 12027 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℝ)
82, 7fsumrecl 15446 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ)
9 remulcl 10956 . . . . 5 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
101, 8, 9sylancr 587 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ∈ ℝ)
11 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
12 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
13 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
14 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
15 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
16 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
17 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
18 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
19 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
20 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
21 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
22 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
23 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
24 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
25 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
2611, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25pntlemb 26745 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2726simp1d 1141 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2827relogcld 25778 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ)
29 peano2re 11148 . . . . . 6 ((log‘𝑍) ∈ ℝ → ((log‘𝑍) + 1) ∈ ℝ)
3028, 29syl 17 . . . . 5 (𝜑 → ((log‘𝑍) + 1) ∈ ℝ)
3130resqcld 13965 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ∈ ℝ)
32 3re 12053 . . . . . 6 3 ∈ ℝ
33 readdcl 10954 . . . . . 6 (((log‘𝑍) ∈ ℝ ∧ 3 ∈ ℝ) → ((log‘𝑍) + 3) ∈ ℝ)
3428, 32, 33sylancl 586 . . . . 5 (𝜑 → ((log‘𝑍) + 3) ∈ ℝ)
3534, 28remulcld 11005 . . . 4 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) ∈ ℝ)
3627rpred 12772 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℝ)
3721simpld 495 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
3836, 37rerpdivcld 12803 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
39 1red 10976 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
4027rpsqrtcld 15123 . . . . . . . . . . . 12 (𝜑 → (√‘𝑍) ∈ ℝ+)
4140rpred 12772 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ∈ ℝ)
42 ere 15798 . . . . . . . . . . . . 13 e ∈ ℝ
4342a1i 11 . . . . . . . . . . . 12 (𝜑 → e ∈ ℝ)
44 1re 10975 . . . . . . . . . . . . . 14 1 ∈ ℝ
45 1lt2 12144 . . . . . . . . . . . . . . 15 1 < 2
46 egt2lt3 15915 . . . . . . . . . . . . . . . 16 (2 < e ∧ e < 3)
4746simpli 484 . . . . . . . . . . . . . . 15 2 < e
4844, 1, 42lttri 11101 . . . . . . . . . . . . . . 15 ((1 < 2 ∧ 2 < e) → 1 < e)
4945, 47, 48mp2an 689 . . . . . . . . . . . . . 14 1 < e
5044, 42, 49ltleii 11098 . . . . . . . . . . . . 13 1 ≤ e
5150a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ≤ e)
5226simp2d 1142 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5352simp2d 1142 . . . . . . . . . . . 12 (𝜑 → e ≤ (√‘𝑍))
5439, 43, 41, 51, 53letrd 11132 . . . . . . . . . . 11 (𝜑 → 1 ≤ (√‘𝑍))
5552simp3d 1143 . . . . . . . . . . 11 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑌))
5639, 41, 38, 54, 55letrd 11132 . . . . . . . . . 10 (𝜑 → 1 ≤ (𝑍 / 𝑌))
57 flge1nn 13541 . . . . . . . . . 10 (((𝑍 / 𝑌) ∈ ℝ ∧ 1 ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5838, 56, 57syl2anc 584 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℕ)
5958nnrpd 12770 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ+)
6059relogcld 25778 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ∈ ℝ)
6160, 39readdcld 11004 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ∈ ℝ)
6261resqcld 13965 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ)
63 logdivbnd 26704 . . . . . . 7 ((⌊‘(𝑍 / 𝑌)) ∈ ℕ → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
6458, 63syl 17 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2))
651a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
66 2pos 12076 . . . . . . . 8 0 < 2
6766a1i 11 . . . . . . 7 (𝜑 → 0 < 2)
68 lemuldiv2 11856 . . . . . . 7 ((Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℝ ∧ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
698, 62, 65, 67, 68syl112anc 1373 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ↔ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ≤ ((((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) / 2)))
7064, 69mpbird 256 . . . . 5 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2))
71 reflcl 13516 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
7238, 71syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ∈ ℝ)
73 flle 13519 . . . . . . . . . 10 ((𝑍 / 𝑌) ∈ ℝ → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7438, 73syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ (𝑍 / 𝑌))
7521simprd 496 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑌)
76 1rp 12734 . . . . . . . . . . . . 13 1 ∈ ℝ+
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ+)
7877, 37, 27lediv2d 12796 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑌 ↔ (𝑍 / 𝑌) ≤ (𝑍 / 1)))
7975, 78mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ≤ (𝑍 / 1))
8036recnd 11003 . . . . . . . . . . 11 (𝜑𝑍 ∈ ℂ)
8180div1d 11743 . . . . . . . . . 10 (𝜑 → (𝑍 / 1) = 𝑍)
8279, 81breqtrd 5100 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑌) ≤ 𝑍)
8372, 38, 36, 74, 82letrd 11132 . . . . . . . 8 (𝜑 → (⌊‘(𝑍 / 𝑌)) ≤ 𝑍)
8459, 27logled 25782 . . . . . . . 8 (𝜑 → ((⌊‘(𝑍 / 𝑌)) ≤ 𝑍 ↔ (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍)))
8583, 84mpbid 231 . . . . . . 7 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ (log‘𝑍))
8660, 28, 39, 85leadd1dd 11589 . . . . . 6 (𝜑 → ((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1))
87 0red 10978 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
88 log1 25741 . . . . . . . . 9 (log‘1) = 0
8958nnge1d 12021 . . . . . . . . . 10 (𝜑 → 1 ≤ (⌊‘(𝑍 / 𝑌)))
90 logleb 25758 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℝ+) → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9176, 59, 90sylancr 587 . . . . . . . . . 10 (𝜑 → (1 ≤ (⌊‘(𝑍 / 𝑌)) ↔ (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌)))))
9289, 91mpbid 231 . . . . . . . . 9 (𝜑 → (log‘1) ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9388, 92eqbrtrrid 5110 . . . . . . . 8 (𝜑 → 0 ≤ (log‘(⌊‘(𝑍 / 𝑌))))
9460lep1d 11906 . . . . . . . 8 (𝜑 → (log‘(⌊‘(𝑍 / 𝑌))) ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9587, 60, 61, 93, 94letrd 11132 . . . . . . 7 (𝜑 → 0 ≤ ((log‘(⌊‘(𝑍 / 𝑌))) + 1))
9687, 61, 30, 95, 86letrd 11132 . . . . . . 7 (𝜑 → 0 ≤ ((log‘𝑍) + 1))
9761, 30, 95, 96le2sqd 13974 . . . . . 6 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1) ≤ ((log‘𝑍) + 1) ↔ (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2)))
9886, 97mpbid 231 . . . . 5 (𝜑 → (((log‘(⌊‘(𝑍 / 𝑌))) + 1)↑2) ≤ (((log‘𝑍) + 1)↑2))
9910, 62, 31, 70, 98letrd 11132 . . . 4 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 1)↑2))
10028resqcld 13965 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ)
10165, 28remulcld 11005 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℝ)
102100, 101readdcld 11004 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + (2 · (log‘𝑍))) ∈ ℝ)
103 loge 25742 . . . . . . 7 (log‘e) = 1
10440rpge0d 12776 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘𝑍))
10541, 41, 104, 54lemulge12d 11913 . . . . . . . . . 10 (𝜑 → (√‘𝑍) ≤ ((√‘𝑍) · (√‘𝑍)))
10627rprege0d 12779 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
107 remsqsqrt 14968 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
108106, 107syl 17 . . . . . . . . . 10 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
109105, 108breqtrd 5100 . . . . . . . . 9 (𝜑 → (√‘𝑍) ≤ 𝑍)
11043, 41, 36, 53, 109letrd 11132 . . . . . . . 8 (𝜑 → e ≤ 𝑍)
111 epr 15917 . . . . . . . . 9 e ∈ ℝ+
112 logleb 25758 . . . . . . . . 9 ((e ∈ ℝ+𝑍 ∈ ℝ+) → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
113111, 27, 112sylancr 587 . . . . . . . 8 (𝜑 → (e ≤ 𝑍 ↔ (log‘e) ≤ (log‘𝑍)))
114110, 113mpbid 231 . . . . . . 7 (𝜑 → (log‘e) ≤ (log‘𝑍))
115103, 114eqbrtrrid 5110 . . . . . 6 (𝜑 → 1 ≤ (log‘𝑍))
11639, 28, 102, 115leadd2dd 11590 . . . . 5 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1) ≤ ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
11728recnd 11003 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
118 binom21 13934 . . . . . 6 ((log‘𝑍) ∈ ℂ → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
119117, 118syl 17 . . . . 5 (𝜑 → (((log‘𝑍) + 1)↑2) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + 1))
120117sqvald 13861 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
121 df-3 12037 . . . . . . . . . 10 3 = (2 + 1)
122121oveq1i 7285 . . . . . . . . 9 (3 · (log‘𝑍)) = ((2 + 1) · (log‘𝑍))
123 2cnd 12051 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
124 1cnd 10970 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
125123, 124, 117adddird 11000 . . . . . . . . 9 (𝜑 → ((2 + 1) · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
126122, 125eqtrid 2790 . . . . . . . 8 (𝜑 → (3 · (log‘𝑍)) = ((2 · (log‘𝑍)) + (1 · (log‘𝑍))))
127117mulid2d 10993 . . . . . . . . 9 (𝜑 → (1 · (log‘𝑍)) = (log‘𝑍))
128127oveq2d 7291 . . . . . . . 8 (𝜑 → ((2 · (log‘𝑍)) + (1 · (log‘𝑍))) = ((2 · (log‘𝑍)) + (log‘𝑍)))
129126, 128eqtr2d 2779 . . . . . . 7 (𝜑 → ((2 · (log‘𝑍)) + (log‘𝑍)) = (3 · (log‘𝑍)))
130120, 129oveq12d 7293 . . . . . 6 (𝜑 → (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
131117sqcld 13862 . . . . . . 7 (𝜑 → ((log‘𝑍)↑2) ∈ ℂ)
132 2cn 12048 . . . . . . . 8 2 ∈ ℂ
133 mulcl 10955 . . . . . . . 8 ((2 ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) → (2 · (log‘𝑍)) ∈ ℂ)
134132, 117, 133sylancr 587 . . . . . . 7 (𝜑 → (2 · (log‘𝑍)) ∈ ℂ)
135131, 134, 117addassd 10997 . . . . . 6 (𝜑 → ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)) = (((log‘𝑍)↑2) + ((2 · (log‘𝑍)) + (log‘𝑍))))
136 3cn 12054 . . . . . . . 8 3 ∈ ℂ
137136a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℂ)
138117, 137, 117adddird 11000 . . . . . 6 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = (((log‘𝑍) · (log‘𝑍)) + (3 · (log‘𝑍))))
139130, 135, 1383eqtr4rd 2789 . . . . 5 (𝜑 → (((log‘𝑍) + 3) · (log‘𝑍)) = ((((log‘𝑍)↑2) + (2 · (log‘𝑍))) + (log‘𝑍)))
140116, 119, 1393brtr4d 5106 . . . 4 (𝜑 → (((log‘𝑍) + 1)↑2) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14110, 31, 35, 99, 140letrd 11132 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)))
14210, 35, 17lemul2d 12816 . . 3 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) ≤ (((log‘𝑍) + 3) · (log‘𝑍)) ↔ (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍)))))
143141, 142mpbid 231 . 2 (𝜑 → (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) ≤ (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
14417rpred 12772 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
145144adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ)
146145recnd 11003 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℂ)
1476recnd 11003 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ)
1485rpcnne0d 12781 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
149 div23 11652 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = ((𝑈 / 𝑛) · (log‘𝑛)))
150 divass 11651 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 · (log‘𝑛)) / 𝑛) = (𝑈 · ((log‘𝑛) / 𝑛)))
151149, 150eqtr3d 2780 . . . . . . 7 ((𝑈 ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
152146, 147, 148, 151syl3anc 1370 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · ((log‘𝑛) / 𝑛)))
153152sumeq2dv 15415 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
154144recnd 11003 . . . . . 6 (𝜑𝑈 ∈ ℂ)
1557recnd 11003 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((log‘𝑛) / 𝑛) ∈ ℂ)
1562, 154, 155fsummulc2 15496 . . . . 5 (𝜑 → (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(𝑈 · ((log‘𝑛) / 𝑛)))
157153, 156eqtr4d 2781 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) = (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛)))
158157oveq2d 7291 . . 3 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
1598recnd 11003 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛) ∈ ℂ)
160123, 154, 159mul12d 11184 . . 3 (𝜑 → (2 · (𝑈 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
161158, 160eqtrd 2778 . 2 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) = (𝑈 · (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((log‘𝑛) / 𝑛))))
16234recnd 11003 . . 3 (𝜑 → ((log‘𝑍) + 3) ∈ ℂ)
163154, 162, 117mulassd 10998 . 2 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) = (𝑈 · (((log‘𝑍) + 3) · (log‘𝑍))))
164143, 161, 1633brtr4d 5106 1 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  cdc 12437  +crp 12730  (,)cioo 13079  [,)cico 13081  [,]cicc 13082  ...cfz 13239  cfl 13510  cexp 13782  csqrt 14944  abscabs 14945  Σcsu 15397  expce 15771  eceu 15772  logclog 25710  ψcchp 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712  df-atan 26017  df-em 26142
This theorem is referenced by:  pntlemo  26755
  Copyright terms: Public domain W3C validator