Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeqf Structured version   Visualization version   GIF version

Theorem climeldmeqf 45071
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeldmeqf.p 𝑘𝜑
climeldmeqf.n 𝑘𝐹
climeldmeqf.o 𝑘𝐺
climeldmeqf.z 𝑍 = (ℤ𝑀)
climeldmeqf.f (𝜑𝐹𝑉)
climeldmeqf.g (𝜑𝐺𝑊)
climeldmeqf.m (𝜑𝑀 ∈ ℤ)
climeldmeqf.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeldmeqf (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeldmeqf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeldmeqf.z . 2 𝑍 = (ℤ𝑀)
2 climeldmeqf.f . 2 (𝜑𝐹𝑉)
3 climeldmeqf.g . 2 (𝜑𝐺𝑊)
4 climeldmeqf.m . 2 (𝜑𝑀 ∈ ℤ)
5 climeldmeqf.p . . . . 5 𝑘𝜑
6 nfv 1910 . . . . 5 𝑘 𝑗𝑍
75, 6nfan 1895 . . . 4 𝑘(𝜑𝑗𝑍)
8 climeldmeqf.n . . . . . 6 𝑘𝐹
9 nfcv 2899 . . . . . 6 𝑘𝑗
108, 9nffv 6907 . . . . 5 𝑘(𝐹𝑗)
11 climeldmeqf.o . . . . . 6 𝑘𝐺
1211, 9nffv 6907 . . . . 5 𝑘(𝐺𝑗)
1310, 12nfeq 2913 . . . 4 𝑘(𝐹𝑗) = (𝐺𝑗)
147, 13nfim 1892 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
15 eleq1w 2812 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 629 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 fveq2 6897 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
18 fveq2 6897 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
1917, 18eqeq12d 2744 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2016, 19imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))))
21 climeldmeqf.e . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
2214, 20, 21chvarfv 2229 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
231, 2, 3, 4, 22climeldmeq 45053 1 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wnf 1778  wcel 2099  wnfc 2879  dom cdm 5678  cfv 6548  cz 12589  cuz 12853  cli 15461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465
This theorem is referenced by:  climeldmeqmpt2  45083
  Copyright terms: Public domain W3C validator