![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeldmeqf | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climeldmeqf.p | ⊢ Ⅎ𝑘𝜑 |
climeldmeqf.n | ⊢ Ⅎ𝑘𝐹 |
climeldmeqf.o | ⊢ Ⅎ𝑘𝐺 |
climeldmeqf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeldmeqf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climeldmeqf.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climeldmeqf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeldmeqf.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climeldmeqf | ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeldmeqf.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climeldmeqf.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | climeldmeqf.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
4 | climeldmeqf.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climeldmeqf.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
6 | nfv 1957 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
7 | 5, 6 | nfan 1946 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
8 | climeldmeqf.n | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
9 | nfcv 2933 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
10 | 8, 9 | nffv 6456 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
11 | climeldmeqf.o | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
12 | 11, 9 | nffv 6456 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
13 | 10, 12 | nfeq 2944 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
14 | 7, 13 | nfim 1943 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
15 | eleq1w 2841 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 622 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | fveq2 6446 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
18 | fveq2 6446 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
19 | 17, 18 | eqeq12d 2792 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
20 | 16, 19 | imbi12d 336 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
21 | climeldmeqf.e | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
22 | 14, 20, 21 | chvar 2359 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
23 | 1, 2, 3, 4, 22 | climeldmeq 40787 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 Ⅎwnf 1827 ∈ wcel 2106 Ⅎwnfc 2918 dom cdm 5355 ‘cfv 6135 ℤcz 11728 ℤ≥cuz 11992 ⇝ cli 14623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 |
This theorem is referenced by: climeldmeqmpt2 40817 |
Copyright terms: Public domain | W3C validator |