| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnsqrt00 | Structured version Visualization version GIF version | ||
| Description: A square root of a complex number is zero iff its argument is 0. Version of sqrt00 15176 for complex numbers. (Contributed by AV, 26-Jan-2023.) |
| Ref | Expression |
|---|---|
| cnsqrt00 | ⊢ (𝐴 ∈ ℂ → ((√‘𝐴) = 0 ↔ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . . 3 ⊢ ((√‘𝐴) = 0 → ((√‘𝐴)↑2) = (0↑2)) | |
| 2 | sqrtth 15278 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴) | |
| 3 | sq0 14105 | . . . . 5 ⊢ (0↑2) = 0 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0↑2) = 0) |
| 5 | 2, 4 | eqeq12d 2747 | . . 3 ⊢ (𝐴 ∈ ℂ → (((√‘𝐴)↑2) = (0↑2) ↔ 𝐴 = 0)) |
| 6 | 1, 5 | imbitrid 244 | . 2 ⊢ (𝐴 ∈ ℂ → ((√‘𝐴) = 0 → 𝐴 = 0)) |
| 7 | fveq2 6828 | . . 3 ⊢ (𝐴 = 0 → (√‘𝐴) = (√‘0)) | |
| 8 | sqrt0 15154 | . . 3 ⊢ (√‘0) = 0 | |
| 9 | 7, 8 | eqtrdi 2782 | . 2 ⊢ (𝐴 = 0 → (√‘𝐴) = 0) |
| 10 | 6, 9 | impbid1 225 | 1 ⊢ (𝐴 ∈ ℂ → ((√‘𝐴) = 0 ↔ 𝐴 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 (class class class)co 7352 ℂcc 11010 0cc0 11012 2c2 12186 ↑cexp 13974 √csqrt 15146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9332 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-rp 12897 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 |
| This theorem is referenced by: iconstr 33786 sqrtcval 43739 quad1 47725 requad2 47728 |
| Copyright terms: Public domain | W3C validator |