Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fz0ssnn0 | Structured version Visualization version GIF version |
Description: Finite sets of sequential nonnegative integers starting with 0 are subsets of NN0. (Contributed by JJ, 1-Jun-2021.) |
Ref | Expression |
---|---|
fz0ssnn0 | ⊢ (0...𝑁) ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn0 13229 | . 2 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
2 | 1 | ssriv 3919 | 1 ⊢ (0...𝑁) ⊆ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3880 (class class class)co 7231 0cc0 10753 ℕ0cn0 12114 ...cfz 13119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 |
This theorem is referenced by: fzossnn0 13297 mertenslem1 15472 bpolylem 15634 nn0gsumfz 19393 gsummptnn0fz 19395 psrbaglefi 20915 psrbaglefiOLD 20916 coe1mul2lem2 21213 pmatcollpw3fi 21706 plypf1 25130 aannenlem1 25245 cycpmco2f1 31134 cycpmco2rn 31135 cycpmco2lem2 31137 cycpmco2lem3 31138 cycpmco2lem4 31139 cycpmco2lem5 31140 cycpmco2lem6 31141 cycpmco2lem7 31142 cycpmco2 31143 fsum2dsub 32323 breprexplemc 32348 breprexpnat 32350 fmtnodvds 44697 |
Copyright terms: Public domain | W3C validator |