MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanaddlem Structured version   Visualization version   GIF version

Theorem tanaddlem 15232
Description: A useful intermediate step in tanadd 15233 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanaddlem (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1))

Proof of Theorem tanaddlem
StepHypRef Expression
1 coscl 15193 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
21ad2antrr 718 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (cos‘𝐴) ∈ ℂ)
3 coscl 15193 . . . . . 6 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
43ad2antlr 719 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (cos‘𝐵) ∈ ℂ)
52, 4mulcld 10349 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
6 sincl 15192 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
76ad2antrr 718 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (sin‘𝐴) ∈ ℂ)
8 sincl 15192 . . . . . 6 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
98ad2antlr 719 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (sin‘𝐵) ∈ ℂ)
107, 9mulcld 10349 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
115, 10subeq0ad 10694 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))) = 0 ↔ ((cos‘𝐴) · (cos‘𝐵)) = ((sin‘𝐴) · (sin‘𝐵))))
12 cosadd 15231 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
1312adantr 473 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
1413eqeq1d 2801 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) = 0 ↔ (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))) = 0))
15 tanval 15194 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
1615ad2ant2r 754 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
17 tanval 15194 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ (cos‘𝐵) ≠ 0) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
1817ad2ant2l 753 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
1916, 18oveq12d 6896 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((tan‘𝐴) · (tan‘𝐵)) = (((sin‘𝐴) / (cos‘𝐴)) · ((sin‘𝐵) / (cos‘𝐵))))
20 simprl 788 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (cos‘𝐴) ≠ 0)
21 simprr 790 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (cos‘𝐵) ≠ 0)
227, 2, 9, 4, 20, 21divmuldivd 11134 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (((sin‘𝐴) / (cos‘𝐴)) · ((sin‘𝐵) / (cos‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))))
2319, 22eqtrd 2833 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((tan‘𝐴) · (tan‘𝐵)) = (((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))))
2423eqeq1d 2801 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (((tan‘𝐴) · (tan‘𝐵)) = 1 ↔ (((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))) = 1))
25 1cnd 10323 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → 1 ∈ ℂ)
262, 4, 20, 21mulne0d 10971 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘𝐴) · (cos‘𝐵)) ≠ 0)
2710, 5, 25, 26divmuld 11115 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))) = 1 ↔ (((cos‘𝐴) · (cos‘𝐵)) · 1) = ((sin‘𝐴) · (sin‘𝐵))))
285mulid1d 10346 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · 1) = ((cos‘𝐴) · (cos‘𝐵)))
2928eqeq1d 2801 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · 1) = ((sin‘𝐴) · (sin‘𝐵)) ↔ ((cos‘𝐴) · (cos‘𝐵)) = ((sin‘𝐴) · (sin‘𝐵))))
3024, 27, 293bitrd 297 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → (((tan‘𝐴) · (tan‘𝐵)) = 1 ↔ ((cos‘𝐴) · (cos‘𝐵)) = ((sin‘𝐴) · (sin‘𝐵))))
3111, 14, 303bitr4d 303 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) = 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) = 1))
3231necon3bid 3015 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wne 2971  cfv 6101  (class class class)co 6878  cc 10222  0cc0 10224  1c1 10225   + caddc 10227   · cmul 10229  cmin 10556   / cdiv 10976  sincsin 15130  cosccos 15131  tanctan 15132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-ico 12430  df-fz 12581  df-fzo 12721  df-fl 12848  df-seq 13056  df-exp 13115  df-fac 13314  df-bc 13343  df-hash 13371  df-shft 14148  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-limsup 14543  df-clim 14560  df-rlim 14561  df-sum 14758  df-ef 15134  df-sin 15136  df-cos 15137  df-tan 15138
This theorem is referenced by:  tanadd  15233  tanregt0  24627
  Copyright terms: Public domain W3C validator