| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdssqf | Structured version Visualization version GIF version | ||
| Description: A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015.) |
| Ref | Expression |
|---|---|
| dvdssqf | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐴) ≠ 0 → (μ‘𝐵) ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐵 ∥ 𝐴) | |
| 2 | prmz 16596 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
| 3 | 2 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
| 4 | zsqcl 14046 | . . . . . . 7 ⊢ (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ) |
| 6 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ) | |
| 7 | 6 | nnzd 12505 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ) |
| 8 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) | |
| 9 | 8 | nnzd 12505 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
| 10 | dvdstr 16215 | . . . . . 6 ⊢ (((𝑝↑2) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑝↑2) ∥ 𝐵 ∧ 𝐵 ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) | |
| 11 | 5, 7, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (((𝑝↑2) ∥ 𝐵 ∧ 𝐵 ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) |
| 12 | 1, 11 | mpan2d 694 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ 𝐵 → (𝑝↑2) ∥ 𝐴)) |
| 13 | 12 | reximdva 3147 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐵 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
| 14 | isnsqf 27082 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((μ‘𝐵) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐵)) | |
| 15 | 14 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐵) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐵)) |
| 16 | isnsqf 27082 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) | |
| 17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
| 18 | 13, 15, 17 | 3imtr4d 294 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐵) = 0 → (μ‘𝐴) = 0)) |
| 19 | 18 | necon3d 2951 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐴) ≠ 0 → (μ‘𝐵) ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∃wrex 3058 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 0cc0 11016 ℕcn 12135 2c2 12190 ℤcz 12478 ↑cexp 13978 ∥ cdvds 16173 ℙcprime 16592 μcmu 27042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-seq 13919 df-exp 13979 df-hash 14248 df-dvds 16174 df-prm 16593 df-mu 27048 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |