| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat0dimscm | Structured version Visualization version GIF version | ||
| Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| mat0dim.a | ⊢ 𝐴 = (∅ Mat 𝑅) |
| Ref | Expression |
|---|---|
| mat0dimscm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
| 2 | 0fi 8959 | . . . 4 ⊢ ∅ ∈ Fin | |
| 3 | mat0dim.a | . . . . 5 ⊢ 𝐴 = (∅ Mat 𝑅) | |
| 4 | 3 | matlmod 22339 | . . . 4 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
| 5 | 2, 1, 4 | sylancr 587 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝐴 ∈ LMod) |
| 6 | 3 | matsca2 22330 | . . . . . . 7 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
| 7 | 2, 6 | mpan 690 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝐴)) |
| 8 | 7 | fveq2d 6821 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝐴))) |
| 9 | 8 | eleq2d 2817 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ (Base‘𝑅) ↔ 𝑋 ∈ (Base‘(Scalar‘𝐴)))) |
| 10 | 9 | biimpa 476 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑋 ∈ (Base‘(Scalar‘𝐴))) |
| 11 | 0ex 5240 | . . . . . 6 ⊢ ∅ ∈ V | |
| 12 | 11 | snid 4610 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 13 | 3 | fveq2i 6820 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘(∅ Mat 𝑅)) |
| 14 | mat0dimbas0 22376 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
| 15 | 13, 14 | eqtrid 2778 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝐴) = {∅}) |
| 16 | 12, 15 | eleqtrrid 2838 | . . . 4 ⊢ (𝑅 ∈ Ring → ∅ ∈ (Base‘𝐴)) |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → ∅ ∈ (Base‘𝐴)) |
| 18 | eqid 2731 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 19 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 20 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
| 21 | eqid 2731 | . . . 4 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
| 22 | 18, 19, 20, 21 | lmodvscl 20806 | . . 3 ⊢ ((𝐴 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐴)) ∧ ∅ ∈ (Base‘𝐴)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
| 23 | 5, 10, 17, 22 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
| 24 | 15 | eleq2d 2817 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) ↔ (𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅})) |
| 25 | elsni 4588 | . . 3 ⊢ ((𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅} → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) | |
| 26 | 24, 25 | biimtrdi 253 | . 2 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅)) |
| 27 | 1, 23, 26 | sylc 65 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4278 {csn 4571 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 Ringcrg 20146 LModclmod 20788 Mat cmat 22317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-prds 17346 df-pws 17348 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-subrg 20480 df-lmod 20790 df-lss 20860 df-sra 21102 df-rgmod 21103 df-dsmm 21664 df-frlm 21679 df-mat 22318 |
| This theorem is referenced by: mat0scmat 22448 chpmat0d 22744 |
| Copyright terms: Public domain | W3C validator |