![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat0dimscm | Structured version Visualization version GIF version |
Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
Ref | Expression |
---|---|
mat0dim.a | ⊢ 𝐴 = (∅ Mat 𝑅) |
Ref | Expression |
---|---|
mat0dimscm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
2 | 0fin 9115 | . . . 4 ⊢ ∅ ∈ Fin | |
3 | mat0dim.a | . . . . 5 ⊢ 𝐴 = (∅ Mat 𝑅) | |
4 | 3 | matlmod 21778 | . . . 4 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
5 | 2, 1, 4 | sylancr 587 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝐴 ∈ LMod) |
6 | 3 | matsca2 21769 | . . . . . . 7 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
7 | 2, 6 | mpan 688 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝐴)) |
8 | 7 | fveq2d 6846 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝐴))) |
9 | 8 | eleq2d 2823 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ (Base‘𝑅) ↔ 𝑋 ∈ (Base‘(Scalar‘𝐴)))) |
10 | 9 | biimpa 477 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑋 ∈ (Base‘(Scalar‘𝐴))) |
11 | 0ex 5264 | . . . . . 6 ⊢ ∅ ∈ V | |
12 | 11 | snid 4622 | . . . . 5 ⊢ ∅ ∈ {∅} |
13 | 3 | fveq2i 6845 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘(∅ Mat 𝑅)) |
14 | mat0dimbas0 21815 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
15 | 13, 14 | eqtrid 2788 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝐴) = {∅}) |
16 | 12, 15 | eleqtrrid 2845 | . . . 4 ⊢ (𝑅 ∈ Ring → ∅ ∈ (Base‘𝐴)) |
17 | 16 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → ∅ ∈ (Base‘𝐴)) |
18 | eqid 2736 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
19 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
20 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
21 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
22 | 18, 19, 20, 21 | lmodvscl 20339 | . . 3 ⊢ ((𝐴 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐴)) ∧ ∅ ∈ (Base‘𝐴)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
23 | 5, 10, 17, 22 | syl3anc 1371 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
24 | 15 | eleq2d 2823 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) ↔ (𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅})) |
25 | elsni 4603 | . . 3 ⊢ ((𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅} → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) | |
26 | 24, 25 | syl6bi 252 | . 2 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅)) |
27 | 1, 23, 26 | sylc 65 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∅c0 4282 {csn 4586 ‘cfv 6496 (class class class)co 7357 Fincfn 8883 Basecbs 17083 Scalarcsca 17136 ·𝑠 cvsca 17137 Ringcrg 19964 LModclmod 20322 Mat cmat 21754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-prds 17329 df-pws 17331 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-mgp 19897 df-ur 19914 df-ring 19966 df-subrg 20220 df-lmod 20324 df-lss 20393 df-sra 20633 df-rgmod 20634 df-dsmm 21138 df-frlm 21153 df-mat 21755 |
This theorem is referenced by: mat0scmat 21887 chpmat0d 22183 |
Copyright terms: Public domain | W3C validator |