Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mat0dimscm | Structured version Visualization version GIF version |
Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
Ref | Expression |
---|---|
mat0dim.a | ⊢ 𝐴 = (∅ Mat 𝑅) |
Ref | Expression |
---|---|
mat0dimscm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
2 | 0fin 8954 | . . . 4 ⊢ ∅ ∈ Fin | |
3 | mat0dim.a | . . . . 5 ⊢ 𝐴 = (∅ Mat 𝑅) | |
4 | 3 | matlmod 21578 | . . . 4 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
5 | 2, 1, 4 | sylancr 587 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝐴 ∈ LMod) |
6 | 3 | matsca2 21569 | . . . . . . 7 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
7 | 2, 6 | mpan 687 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝐴)) |
8 | 7 | fveq2d 6778 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝐴))) |
9 | 8 | eleq2d 2824 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ (Base‘𝑅) ↔ 𝑋 ∈ (Base‘(Scalar‘𝐴)))) |
10 | 9 | biimpa 477 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑋 ∈ (Base‘(Scalar‘𝐴))) |
11 | 0ex 5231 | . . . . . 6 ⊢ ∅ ∈ V | |
12 | 11 | snid 4597 | . . . . 5 ⊢ ∅ ∈ {∅} |
13 | 3 | fveq2i 6777 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘(∅ Mat 𝑅)) |
14 | mat0dimbas0 21615 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
15 | 13, 14 | eqtrid 2790 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝐴) = {∅}) |
16 | 12, 15 | eleqtrrid 2846 | . . . 4 ⊢ (𝑅 ∈ Ring → ∅ ∈ (Base‘𝐴)) |
17 | 16 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → ∅ ∈ (Base‘𝐴)) |
18 | eqid 2738 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
19 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
20 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
21 | eqid 2738 | . . . 4 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
22 | 18, 19, 20, 21 | lmodvscl 20140 | . . 3 ⊢ ((𝐴 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐴)) ∧ ∅ ∈ (Base‘𝐴)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
23 | 5, 10, 17, 22 | syl3anc 1370 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
24 | 15 | eleq2d 2824 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) ↔ (𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅})) |
25 | elsni 4578 | . . 3 ⊢ ((𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅} → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) | |
26 | 24, 25 | syl6bi 252 | . 2 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅)) |
27 | 1, 23, 26 | sylc 65 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 {csn 4561 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 Ringcrg 19783 LModclmod 20123 Mat cmat 21554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-prds 17158 df-pws 17160 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-lmod 20125 df-lss 20194 df-sra 20434 df-rgmod 20435 df-dsmm 20939 df-frlm 20954 df-mat 21555 |
This theorem is referenced by: mat0scmat 21687 chpmat0d 21983 |
Copyright terms: Public domain | W3C validator |