| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat0dimscm | Structured version Visualization version GIF version | ||
| Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| mat0dim.a | ⊢ 𝐴 = (∅ Mat 𝑅) |
| Ref | Expression |
|---|---|
| mat0dimscm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
| 2 | 0fi 8975 | . . . 4 ⊢ ∅ ∈ Fin | |
| 3 | mat0dim.a | . . . . 5 ⊢ 𝐴 = (∅ Mat 𝑅) | |
| 4 | 3 | matlmod 22364 | . . . 4 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
| 5 | 2, 1, 4 | sylancr 587 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝐴 ∈ LMod) |
| 6 | 3 | matsca2 22355 | . . . . . . 7 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
| 7 | 2, 6 | mpan 690 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝐴)) |
| 8 | 7 | fveq2d 6835 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝐴))) |
| 9 | 8 | eleq2d 2819 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ (Base‘𝑅) ↔ 𝑋 ∈ (Base‘(Scalar‘𝐴)))) |
| 10 | 9 | biimpa 476 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑋 ∈ (Base‘(Scalar‘𝐴))) |
| 11 | 0ex 5249 | . . . . . 6 ⊢ ∅ ∈ V | |
| 12 | 11 | snid 4616 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 13 | 3 | fveq2i 6834 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘(∅ Mat 𝑅)) |
| 14 | mat0dimbas0 22401 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
| 15 | 13, 14 | eqtrid 2780 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝐴) = {∅}) |
| 16 | 12, 15 | eleqtrrid 2840 | . . . 4 ⊢ (𝑅 ∈ Ring → ∅ ∈ (Base‘𝐴)) |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → ∅ ∈ (Base‘𝐴)) |
| 18 | eqid 2733 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 19 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 20 | eqid 2733 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
| 21 | eqid 2733 | . . . 4 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
| 22 | 18, 19, 20, 21 | lmodvscl 20820 | . . 3 ⊢ ((𝐴 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐴)) ∧ ∅ ∈ (Base‘𝐴)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
| 23 | 5, 10, 17, 22 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
| 24 | 15 | eleq2d 2819 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) ↔ (𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅})) |
| 25 | elsni 4594 | . . 3 ⊢ ((𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅} → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) | |
| 26 | 24, 25 | biimtrdi 253 | . 2 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅)) |
| 27 | 1, 23, 26 | sylc 65 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {csn 4577 ‘cfv 6489 (class class class)co 7355 Fincfn 8879 Basecbs 17127 Scalarcsca 17171 ·𝑠 cvsca 17172 Ringcrg 20159 LModclmod 20802 Mat cmat 22342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-prds 17358 df-pws 17360 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-subrg 20494 df-lmod 20804 df-lss 20874 df-sra 21116 df-rgmod 21117 df-dsmm 21678 df-frlm 21693 df-mat 22343 |
| This theorem is referenced by: mat0scmat 22473 chpmat0d 22769 |
| Copyright terms: Public domain | W3C validator |