| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat0dimscm | Structured version Visualization version GIF version | ||
| Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| mat0dim.a | ⊢ 𝐴 = (∅ Mat 𝑅) |
| Ref | Expression |
|---|---|
| mat0dimscm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
| 2 | 0fi 9056 | . . . 4 ⊢ ∅ ∈ Fin | |
| 3 | mat0dim.a | . . . . 5 ⊢ 𝐴 = (∅ Mat 𝑅) | |
| 4 | 3 | matlmod 22367 | . . . 4 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
| 5 | 2, 1, 4 | sylancr 587 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝐴 ∈ LMod) |
| 6 | 3 | matsca2 22358 | . . . . . . 7 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
| 7 | 2, 6 | mpan 690 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝐴)) |
| 8 | 7 | fveq2d 6880 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝐴))) |
| 9 | 8 | eleq2d 2820 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ (Base‘𝑅) ↔ 𝑋 ∈ (Base‘(Scalar‘𝐴)))) |
| 10 | 9 | biimpa 476 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑋 ∈ (Base‘(Scalar‘𝐴))) |
| 11 | 0ex 5277 | . . . . . 6 ⊢ ∅ ∈ V | |
| 12 | 11 | snid 4638 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 13 | 3 | fveq2i 6879 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘(∅ Mat 𝑅)) |
| 14 | mat0dimbas0 22404 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
| 15 | 13, 14 | eqtrid 2782 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝐴) = {∅}) |
| 16 | 12, 15 | eleqtrrid 2841 | . . . 4 ⊢ (𝑅 ∈ Ring → ∅ ∈ (Base‘𝐴)) |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → ∅ ∈ (Base‘𝐴)) |
| 18 | eqid 2735 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 19 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 20 | eqid 2735 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
| 21 | eqid 2735 | . . . 4 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
| 22 | 18, 19, 20, 21 | lmodvscl 20835 | . . 3 ⊢ ((𝐴 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐴)) ∧ ∅ ∈ (Base‘𝐴)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
| 23 | 5, 10, 17, 22 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴)) |
| 24 | 15 | eleq2d 2820 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) ↔ (𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅})) |
| 25 | elsni 4618 | . . 3 ⊢ ((𝑋( ·𝑠 ‘𝐴)∅) ∈ {∅} → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) | |
| 26 | 24, 25 | biimtrdi 253 | . 2 ⊢ (𝑅 ∈ Ring → ((𝑋( ·𝑠 ‘𝐴)∅) ∈ (Base‘𝐴) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅)) |
| 27 | 1, 23, 26 | sylc 65 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 {csn 4601 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 Ringcrg 20193 LModclmod 20817 Mat cmat 22345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-subrg 20530 df-lmod 20819 df-lss 20889 df-sra 21131 df-rgmod 21132 df-dsmm 21692 df-frlm 21707 df-mat 22346 |
| This theorem is referenced by: mat0scmat 22476 chpmat0d 22772 |
| Copyright terms: Public domain | W3C validator |