| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2detleiblem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for m2detleib 22554. (Contributed by AV, 20-Dec-2018.) |
| Ref | Expression |
|---|---|
| m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
| m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| m2detleiblem5 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (𝑌‘(𝑆‘𝑄)) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11223 | . . . . 5 ⊢ 1 ∈ V | |
| 2 | 2nn 12305 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 3 | prex 5404 | . . . . . . 7 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ V | |
| 4 | 3 | prid1 4735 | . . . . . 6 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 5 | eqid 2734 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 6 | m2detleiblem1.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 7 | m2detleiblem1.n | . . . . . . 7 ⊢ 𝑁 = {1, 2} | |
| 8 | 5, 6, 7 | symg2bas 19359 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 9 | 4, 8 | eleqtrrid 2840 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → {〈1, 1〉, 〈2, 2〉} ∈ 𝑃) |
| 10 | 1, 2, 9 | mp2an 692 | . . . 4 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ 𝑃 |
| 11 | eleq1 2821 | . . . 4 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑄 ∈ 𝑃 ↔ {〈1, 1〉, 〈2, 2〉} ∈ 𝑃)) | |
| 12 | 10, 11 | mpbiri 258 | . . 3 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → 𝑄 ∈ 𝑃) |
| 13 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 14 | m2detleiblem1.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 15 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 16 | 7, 6, 13, 14, 15 | m2detleiblem1 22547 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 17 | 12, 16 | sylan2 593 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 18 | fveq2 6872 | . . . . 5 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 1〉, 〈2, 2〉})) | |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 1〉, 〈2, 2〉})) |
| 20 | eqid 2734 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
| 21 | eqid 2734 | . . . . 5 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
| 22 | 7, 5, 6, 20, 21 | psgnprfval1 19488 | . . . 4 ⊢ ((pmSgn‘𝑁)‘{〈1, 1〉, 〈2, 2〉}) = 1 |
| 23 | 19, 22 | eqtrdi 2785 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → ((pmSgn‘𝑁)‘𝑄) = 1) |
| 24 | 23 | oveq1d 7414 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 ) = (1(.g‘𝑅) 1 )) |
| 25 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 26 | 25, 15 | ringidcl 20210 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → 1 ∈ (Base‘𝑅)) |
| 28 | eqid 2734 | . . . 4 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 29 | 25, 28 | mulg1 19049 | . . 3 ⊢ ( 1 ∈ (Base‘𝑅) → (1(.g‘𝑅) 1 ) = 1 ) |
| 30 | 27, 29 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (1(.g‘𝑅) 1 ) = 1 ) |
| 31 | 17, 24, 30 | 3eqtrd 2773 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (𝑌‘(𝑆‘𝑄)) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 {cpr 4601 〈cop 4605 ran crn 5652 ‘cfv 6527 (class class class)co 7399 1c1 11122 ℕcn 12232 2c2 12287 Basecbs 17213 .gcmg 19035 SymGrpcsymg 19335 pmTrspcpmtr 19407 pmSgncpsgn 19455 1rcur 20126 Ringcrg 20178 ℤRHomczrh 21445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-addf 11200 ax-mulf 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-tpos 8219 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-oadd 8478 df-er 8713 df-map 8836 df-pm 8837 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9907 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-xnn0 12567 df-z 12581 df-dec 12701 df-uz 12845 df-rp 13001 df-fz 13514 df-fzo 13661 df-seq 14009 df-exp 14069 df-fac 14280 df-bc 14309 df-hash 14337 df-word 14520 df-lsw 14568 df-concat 14576 df-s1 14601 df-substr 14646 df-pfx 14676 df-splice 14755 df-reverse 14764 df-s2 14854 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-0g 17440 df-gsum 17441 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-submnd 18747 df-efmnd 18832 df-grp 18904 df-minusg 18905 df-mulg 19036 df-subg 19091 df-ghm 19181 df-gim 19227 df-oppg 19314 df-symg 19336 df-pmtr 19408 df-psgn 19457 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-ring 20180 df-cring 20181 df-rhm 20417 df-subrng 20491 df-subrg 20515 df-cnfld 21301 df-zring 21393 df-zrh 21449 |
| This theorem is referenced by: m2detleib 22554 |
| Copyright terms: Public domain | W3C validator |