| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2detleiblem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for m2detleib 22552. (Contributed by AV, 20-Dec-2018.) |
| Ref | Expression |
|---|---|
| m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
| m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| m2detleiblem5 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (𝑌‘(𝑆‘𝑄)) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11114 | . . . . 5 ⊢ 1 ∈ V | |
| 2 | 2nn 12204 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 3 | prex 5377 | . . . . . . 7 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ V | |
| 4 | 3 | prid1 4714 | . . . . . 6 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 6 | m2detleiblem1.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 7 | m2detleiblem1.n | . . . . . . 7 ⊢ 𝑁 = {1, 2} | |
| 8 | 5, 6, 7 | symg2bas 19311 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 9 | 4, 8 | eleqtrrid 2838 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → {〈1, 1〉, 〈2, 2〉} ∈ 𝑃) |
| 10 | 1, 2, 9 | mp2an 692 | . . . 4 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ 𝑃 |
| 11 | eleq1 2819 | . . . 4 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑄 ∈ 𝑃 ↔ {〈1, 1〉, 〈2, 2〉} ∈ 𝑃)) | |
| 12 | 10, 11 | mpbiri 258 | . . 3 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → 𝑄 ∈ 𝑃) |
| 13 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 14 | m2detleiblem1.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 15 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 16 | 7, 6, 13, 14, 15 | m2detleiblem1 22545 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 17 | 12, 16 | sylan2 593 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 18 | fveq2 6828 | . . . . 5 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 1〉, 〈2, 2〉})) | |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 1〉, 〈2, 2〉})) |
| 20 | eqid 2731 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
| 21 | eqid 2731 | . . . . 5 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
| 22 | 7, 5, 6, 20, 21 | psgnprfval1 19440 | . . . 4 ⊢ ((pmSgn‘𝑁)‘{〈1, 1〉, 〈2, 2〉}) = 1 |
| 23 | 19, 22 | eqtrdi 2782 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → ((pmSgn‘𝑁)‘𝑄) = 1) |
| 24 | 23 | oveq1d 7367 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 ) = (1(.g‘𝑅) 1 )) |
| 25 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 26 | 25, 15 | ringidcl 20189 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → 1 ∈ (Base‘𝑅)) |
| 28 | eqid 2731 | . . . 4 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 29 | 25, 28 | mulg1 19000 | . . 3 ⊢ ( 1 ∈ (Base‘𝑅) → (1(.g‘𝑅) 1 ) = 1 ) |
| 30 | 27, 29 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (1(.g‘𝑅) 1 ) = 1 ) |
| 31 | 17, 24, 30 | 3eqtrd 2770 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (𝑌‘(𝑆‘𝑄)) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4577 〈cop 4581 ran crn 5620 ‘cfv 6487 (class class class)co 7352 1c1 11013 ℕcn 12131 2c2 12186 Basecbs 17126 .gcmg 18986 SymGrpcsymg 19287 pmTrspcpmtr 19359 pmSgncpsgn 19407 1rcur 20105 Ringcrg 20157 ℤRHomczrh 21442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-addf 11091 ax-mulf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-xnn0 12461 df-z 12475 df-dec 12595 df-uz 12739 df-rp 12897 df-fz 13414 df-fzo 13561 df-seq 13915 df-exp 13975 df-fac 14187 df-bc 14216 df-hash 14244 df-word 14427 df-lsw 14476 df-concat 14484 df-s1 14510 df-substr 14555 df-pfx 14585 df-splice 14663 df-reverse 14672 df-s2 14761 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-0g 17351 df-gsum 17352 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-efmnd 18783 df-grp 18855 df-minusg 18856 df-mulg 18987 df-subg 19042 df-ghm 19131 df-gim 19177 df-oppg 19264 df-symg 19288 df-pmtr 19360 df-psgn 19409 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-rhm 20396 df-subrng 20467 df-subrg 20491 df-cnfld 21298 df-zring 21390 df-zrh 21446 |
| This theorem is referenced by: m2detleib 22552 |
| Copyright terms: Public domain | W3C validator |