MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsbc Structured version   Visualization version   GIF version

Theorem prmdvdsbc 16655
Description: Condition for a prime number to divide a binomial coefficient. (Contributed by Thierry Arnoux, 17-Sep-2023.)
Assertion
Ref Expression
prmdvdsbc ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑁))

Proof of Theorem prmdvdsbc
StepHypRef Expression
1 eqid 2729 . . 3 ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))) = ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁)))
2 simpl 482 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
3 prmnn 16603 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43nnzd 12516 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5 1nn0 12418 . . . . . . . . 9 1 ∈ ℕ0
6 eluzmn 12760 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
74, 5, 6sylancl 586 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
8 fzss2 13485 . . . . . . . 8 (𝑃 ∈ (ℤ‘(𝑃 − 1)) → (1...(𝑃 − 1)) ⊆ (1...𝑃))
97, 8syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (1...𝑃))
10 fz1ssfz0 13544 . . . . . . 7 (1...𝑃) ⊆ (0...𝑃)
119, 10sstrdi 3950 . . . . . 6 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (0...𝑃))
1211sselda 3937 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (0...𝑃))
13 bcval2 14230 . . . . 5 (𝑁 ∈ (0...𝑃) → (𝑃C𝑁) = ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))))
1412, 13syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃C𝑁) = ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))))
153nnnn0d 12463 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
1615adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℕ0)
17 elfzelz 13445 . . . . . . 7 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℤ)
1817adantl 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℤ)
19 bccl 14247 . . . . . 6 ((𝑃 ∈ ℕ0𝑁 ∈ ℤ) → (𝑃C𝑁) ∈ ℕ0)
2016, 18, 19syl2anc 584 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃C𝑁) ∈ ℕ0)
2120nn0zd 12515 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃C𝑁) ∈ ℤ)
2214, 21eqeltrrd 2829 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))) ∈ ℤ)
23 elfznn 13474 . . . . . . . . 9 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℕ)
2423adantl 481 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ)
2524nnnn0d 12463 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ0)
26 1zzd 12524 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 ∈ ℤ)
274adantr 480 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℤ)
28 simpr 484 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (1...(𝑃 − 1)))
29 elfzm11 13516 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 ∈ (1...(𝑃 − 1)) ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁𝑁 < 𝑃)))
3029biimpa 476 . . . . . . . . 9 (((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁𝑁 < 𝑃))
3130simp3d 1144 . . . . . . . 8 (((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
3226, 27, 28, 31syl21anc 837 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
33 ltsubnn0 12453 . . . . . . . 8 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → (𝑃𝑁) ∈ ℕ0))
3433imp 406 . . . . . . 7 (((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁 < 𝑃) → (𝑃𝑁) ∈ ℕ0)
3516, 25, 32, 34syl21anc 837 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃𝑁) ∈ ℕ0)
3635faccld 14209 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ∈ ℕ)
3736nnzd 12516 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ∈ ℤ)
3825faccld 14209 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ∈ ℕ)
3938nnzd 12516 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ∈ ℤ)
4037, 39zmulcld 12604 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((!‘(𝑃𝑁)) · (!‘𝑁)) ∈ ℤ)
4137zcnd 12599 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ∈ ℂ)
4239zcnd 12599 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ∈ ℂ)
43 facne0 14211 . . . . 5 ((𝑃𝑁) ∈ ℕ0 → (!‘(𝑃𝑁)) ≠ 0)
4435, 43syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ≠ 0)
45 facne0 14211 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ≠ 0)
4625, 45syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ≠ 0)
4741, 42, 44, 46mulne0d 11790 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((!‘(𝑃𝑁)) · (!‘𝑁)) ≠ 0)
48 uzid 12768 . . . . . 6 (𝑃 ∈ ℤ → 𝑃 ∈ (ℤ𝑃))
494, 48syl 17 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ𝑃))
50 dvdsfac 16255 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∈ (ℤ𝑃)) → 𝑃 ∥ (!‘𝑃))
513, 49, 50syl2anc 584 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∥ (!‘𝑃))
5251adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (!‘𝑃))
5316nn0red 12464 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℝ)
5424nnrpd 12953 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℝ+)
5553, 54ltsubrpd 12987 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃𝑁) < 𝑃)
56 prmndvdsfaclt 16654 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃𝑁) ∈ ℕ0) → ((𝑃𝑁) < 𝑃 → ¬ 𝑃 ∥ (!‘(𝑃𝑁))))
5756imp 406 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃𝑁) ∈ ℕ0) ∧ (𝑃𝑁) < 𝑃) → ¬ 𝑃 ∥ (!‘(𝑃𝑁)))
582, 35, 55, 57syl21anc 837 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (!‘(𝑃𝑁)))
59 prmndvdsfaclt 16654 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → ¬ 𝑃 ∥ (!‘𝑁)))
6059imp 406 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑁 < 𝑃) → ¬ 𝑃 ∥ (!‘𝑁))
612, 25, 32, 60syl21anc 837 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (!‘𝑁))
62 ioran 985 . . . . . 6 (¬ (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁)) ↔ (¬ 𝑃 ∥ (!‘(𝑃𝑁)) ∧ ¬ 𝑃 ∥ (!‘𝑁)))
63 euclemma 16642 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)) ↔ (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁))))
6463biimpd 229 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)) → (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁))))
6564con3d 152 . . . . . 6 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → (¬ (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁)) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁))))
6662, 65biimtrrid 243 . . . . 5 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → ((¬ 𝑃 ∥ (!‘(𝑃𝑁)) ∧ ¬ 𝑃 ∥ (!‘𝑁)) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁))))
6766imp 406 . . . 4 (((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) ∧ (¬ 𝑃 ∥ (!‘(𝑃𝑁)) ∧ ¬ 𝑃 ∥ (!‘𝑁))) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)))
682, 37, 39, 58, 61, 67syl32anc 1380 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)))
691, 2, 22, 40, 47, 52, 68dvdszzq 16650 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))))
7069, 14breqtrrd 5123 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  !cfa 14198  Ccbc 14227  cdvds 16181  cprime 16600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601
This theorem is referenced by:  freshmansdream  21499
  Copyright terms: Public domain W3C validator