Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsbc Structured version   Visualization version   GIF version

Theorem prmdvdsbc 31130
Description: Condition for a prime number to divide a binomial coefficient. (Contributed by Thierry Arnoux, 17-Sep-2023.)
Assertion
Ref Expression
prmdvdsbc ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑁))

Proof of Theorem prmdvdsbc
StepHypRef Expression
1 eqid 2738 . . 3 ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))) = ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁)))
2 simpl 483 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
3 prmnn 16379 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43nnzd 12425 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5 1nn0 12249 . . . . . . . . 9 1 ∈ ℕ0
6 eluzmn 12589 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
74, 5, 6sylancl 586 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
8 fzss2 13296 . . . . . . . 8 (𝑃 ∈ (ℤ‘(𝑃 − 1)) → (1...(𝑃 − 1)) ⊆ (1...𝑃))
97, 8syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (1...𝑃))
10 fz1ssfz0 13352 . . . . . . 7 (1...𝑃) ⊆ (0...𝑃)
119, 10sstrdi 3933 . . . . . 6 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (0...𝑃))
1211sselda 3921 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (0...𝑃))
13 bcval2 14019 . . . . 5 (𝑁 ∈ (0...𝑃) → (𝑃C𝑁) = ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))))
1412, 13syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃C𝑁) = ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))))
153nnnn0d 12293 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
1615adantr 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℕ0)
17 elfzelz 13256 . . . . . . 7 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℤ)
1817adantl 482 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℤ)
19 bccl 14036 . . . . . 6 ((𝑃 ∈ ℕ0𝑁 ∈ ℤ) → (𝑃C𝑁) ∈ ℕ0)
2016, 18, 19syl2anc 584 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃C𝑁) ∈ ℕ0)
2120nn0zd 12424 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃C𝑁) ∈ ℤ)
2214, 21eqeltrrd 2840 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))) ∈ ℤ)
23 elfznn 13285 . . . . . . . . 9 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℕ)
2423adantl 482 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ)
2524nnnn0d 12293 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ0)
26 1zzd 12351 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 ∈ ℤ)
274adantr 481 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℤ)
28 simpr 485 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (1...(𝑃 − 1)))
29 elfzm11 13327 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 ∈ (1...(𝑃 − 1)) ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁𝑁 < 𝑃)))
3029biimpa 477 . . . . . . . . 9 (((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁𝑁 < 𝑃))
3130simp3d 1143 . . . . . . . 8 (((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
3226, 27, 28, 31syl21anc 835 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
33 ltsubnn0 12284 . . . . . . . 8 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → (𝑃𝑁) ∈ ℕ0))
3433imp 407 . . . . . . 7 (((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁 < 𝑃) → (𝑃𝑁) ∈ ℕ0)
3516, 25, 32, 34syl21anc 835 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃𝑁) ∈ ℕ0)
3635faccld 13998 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ∈ ℕ)
3736nnzd 12425 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ∈ ℤ)
3825faccld 13998 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ∈ ℕ)
3938nnzd 12425 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ∈ ℤ)
4037, 39zmulcld 12432 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((!‘(𝑃𝑁)) · (!‘𝑁)) ∈ ℤ)
4137zcnd 12427 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ∈ ℂ)
4239zcnd 12427 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ∈ ℂ)
43 facne0 14000 . . . . 5 ((𝑃𝑁) ∈ ℕ0 → (!‘(𝑃𝑁)) ≠ 0)
4435, 43syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ≠ 0)
45 facne0 14000 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ≠ 0)
4625, 45syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ≠ 0)
4741, 42, 44, 46mulne0d 11627 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((!‘(𝑃𝑁)) · (!‘𝑁)) ≠ 0)
48 uzid 12597 . . . . . 6 (𝑃 ∈ ℤ → 𝑃 ∈ (ℤ𝑃))
494, 48syl 17 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ𝑃))
50 dvdsfac 16035 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∈ (ℤ𝑃)) → 𝑃 ∥ (!‘𝑃))
513, 49, 50syl2anc 584 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∥ (!‘𝑃))
5251adantr 481 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (!‘𝑃))
5316nn0red 12294 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℝ)
5424nnrpd 12770 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℝ+)
5553, 54ltsubrpd 12804 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃𝑁) < 𝑃)
56 prmndvdsfaclt 16430 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃𝑁) ∈ ℕ0) → ((𝑃𝑁) < 𝑃 → ¬ 𝑃 ∥ (!‘(𝑃𝑁))))
5756imp 407 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃𝑁) ∈ ℕ0) ∧ (𝑃𝑁) < 𝑃) → ¬ 𝑃 ∥ (!‘(𝑃𝑁)))
582, 35, 55, 57syl21anc 835 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (!‘(𝑃𝑁)))
59 prmndvdsfaclt 16430 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → ¬ 𝑃 ∥ (!‘𝑁)))
6059imp 407 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑁 < 𝑃) → ¬ 𝑃 ∥ (!‘𝑁))
612, 25, 32, 60syl21anc 835 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (!‘𝑁))
62 ioran 981 . . . . . 6 (¬ (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁)) ↔ (¬ 𝑃 ∥ (!‘(𝑃𝑁)) ∧ ¬ 𝑃 ∥ (!‘𝑁)))
63 euclemma 16418 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)) ↔ (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁))))
6463biimpd 228 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)) → (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁))))
6564con3d 152 . . . . . 6 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → (¬ (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁)) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁))))
6662, 65syl5bir 242 . . . . 5 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → ((¬ 𝑃 ∥ (!‘(𝑃𝑁)) ∧ ¬ 𝑃 ∥ (!‘𝑁)) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁))))
6766imp 407 . . . 4 (((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) ∧ (¬ 𝑃 ∥ (!‘(𝑃𝑁)) ∧ ¬ 𝑃 ∥ (!‘𝑁))) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)))
682, 37, 39, 58, 61, 67syl32anc 1377 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)))
691, 2, 22, 40, 47, 52, 68dvdszzq 31129 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))))
7069, 14breqtrrd 5102 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  !cfa 13987  Ccbc 14016  cdvds 15963  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377
This theorem is referenced by:  freshmansdream  31484
  Copyright terms: Public domain W3C validator