MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsbc Structured version   Visualization version   GIF version

Theorem prmdvdsbc 16639
Description: Condition for a prime number to divide a binomial coefficient. (Contributed by Thierry Arnoux, 17-Sep-2023.)
Assertion
Ref Expression
prmdvdsbc ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑁))

Proof of Theorem prmdvdsbc
StepHypRef Expression
1 eqid 2733 . . 3 ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))) = ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁)))
2 simpl 482 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
3 prmnn 16587 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43nnzd 12501 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5 1nn0 12404 . . . . . . . . 9 1 ∈ ℕ0
6 eluzmn 12745 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
74, 5, 6sylancl 586 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
8 fzss2 13466 . . . . . . . 8 (𝑃 ∈ (ℤ‘(𝑃 − 1)) → (1...(𝑃 − 1)) ⊆ (1...𝑃))
97, 8syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (1...𝑃))
10 fz1ssfz0 13525 . . . . . . 7 (1...𝑃) ⊆ (0...𝑃)
119, 10sstrdi 3943 . . . . . 6 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (0...𝑃))
1211sselda 3930 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (0...𝑃))
13 bcval2 14214 . . . . 5 (𝑁 ∈ (0...𝑃) → (𝑃C𝑁) = ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))))
1412, 13syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃C𝑁) = ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))))
153nnnn0d 12449 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
1615adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℕ0)
17 elfzelz 13426 . . . . . . 7 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℤ)
1817adantl 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℤ)
19 bccl 14231 . . . . . 6 ((𝑃 ∈ ℕ0𝑁 ∈ ℤ) → (𝑃C𝑁) ∈ ℕ0)
2016, 18, 19syl2anc 584 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃C𝑁) ∈ ℕ0)
2120nn0zd 12500 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃C𝑁) ∈ ℤ)
2214, 21eqeltrrd 2834 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))) ∈ ℤ)
23 elfznn 13455 . . . . . . . . 9 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℕ)
2423adantl 481 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ)
2524nnnn0d 12449 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ0)
26 1zzd 12509 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 ∈ ℤ)
274adantr 480 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℤ)
28 simpr 484 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (1...(𝑃 − 1)))
29 elfzm11 13497 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 ∈ (1...(𝑃 − 1)) ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁𝑁 < 𝑃)))
3029biimpa 476 . . . . . . . . 9 (((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁𝑁 < 𝑃))
3130simp3d 1144 . . . . . . . 8 (((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
3226, 27, 28, 31syl21anc 837 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
33 ltsubnn0 12439 . . . . . . . 8 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → (𝑃𝑁) ∈ ℕ0))
3433imp 406 . . . . . . 7 (((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁 < 𝑃) → (𝑃𝑁) ∈ ℕ0)
3516, 25, 32, 34syl21anc 837 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃𝑁) ∈ ℕ0)
3635faccld 14193 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ∈ ℕ)
3736nnzd 12501 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ∈ ℤ)
3825faccld 14193 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ∈ ℕ)
3938nnzd 12501 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ∈ ℤ)
4037, 39zmulcld 12589 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((!‘(𝑃𝑁)) · (!‘𝑁)) ∈ ℤ)
4137zcnd 12584 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ∈ ℂ)
4239zcnd 12584 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ∈ ℂ)
43 facne0 14195 . . . . 5 ((𝑃𝑁) ∈ ℕ0 → (!‘(𝑃𝑁)) ≠ 0)
4435, 43syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘(𝑃𝑁)) ≠ 0)
45 facne0 14195 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ≠ 0)
4625, 45syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (!‘𝑁) ≠ 0)
4741, 42, 44, 46mulne0d 11776 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((!‘(𝑃𝑁)) · (!‘𝑁)) ≠ 0)
48 uzid 12753 . . . . . 6 (𝑃 ∈ ℤ → 𝑃 ∈ (ℤ𝑃))
494, 48syl 17 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ𝑃))
50 dvdsfac 16239 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∈ (ℤ𝑃)) → 𝑃 ∥ (!‘𝑃))
513, 49, 50syl2anc 584 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∥ (!‘𝑃))
5251adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (!‘𝑃))
5316nn0red 12450 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℝ)
5424nnrpd 12934 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℝ+)
5553, 54ltsubrpd 12968 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃𝑁) < 𝑃)
56 prmndvdsfaclt 16638 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃𝑁) ∈ ℕ0) → ((𝑃𝑁) < 𝑃 → ¬ 𝑃 ∥ (!‘(𝑃𝑁))))
5756imp 406 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃𝑁) ∈ ℕ0) ∧ (𝑃𝑁) < 𝑃) → ¬ 𝑃 ∥ (!‘(𝑃𝑁)))
582, 35, 55, 57syl21anc 837 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (!‘(𝑃𝑁)))
59 prmndvdsfaclt 16638 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → ¬ 𝑃 ∥ (!‘𝑁)))
6059imp 406 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑁 < 𝑃) → ¬ 𝑃 ∥ (!‘𝑁))
612, 25, 32, 60syl21anc 837 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (!‘𝑁))
62 ioran 985 . . . . . 6 (¬ (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁)) ↔ (¬ 𝑃 ∥ (!‘(𝑃𝑁)) ∧ ¬ 𝑃 ∥ (!‘𝑁)))
63 euclemma 16626 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)) ↔ (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁))))
6463biimpd 229 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)) → (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁))))
6564con3d 152 . . . . . 6 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → (¬ (𝑃 ∥ (!‘(𝑃𝑁)) ∨ 𝑃 ∥ (!‘𝑁)) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁))))
6662, 65biimtrrid 243 . . . . 5 ((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) → ((¬ 𝑃 ∥ (!‘(𝑃𝑁)) ∧ ¬ 𝑃 ∥ (!‘𝑁)) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁))))
6766imp 406 . . . 4 (((𝑃 ∈ ℙ ∧ (!‘(𝑃𝑁)) ∈ ℤ ∧ (!‘𝑁) ∈ ℤ) ∧ (¬ 𝑃 ∥ (!‘(𝑃𝑁)) ∧ ¬ 𝑃 ∥ (!‘𝑁))) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)))
682, 37, 39, 58, 61, 67syl32anc 1380 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ ((!‘(𝑃𝑁)) · (!‘𝑁)))
691, 2, 22, 40, 47, 52, 68dvdszzq 16634 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((!‘𝑃) / ((!‘(𝑃𝑁)) · (!‘𝑁))))
7069, 14breqtrrd 5121 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wss 3898   class class class wbr 5093  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   · cmul 11018   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  0cn0 12388  cz 12475  cuz 12738  ...cfz 13409  !cfa 14182  Ccbc 14211  cdvds 16165  cprime 16584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-prm 16585
This theorem is referenced by:  freshmansdream  21513
  Copyright terms: Public domain W3C validator