![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem1 | Structured version Visualization version GIF version |
Description: 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem1.x | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
etransclem1.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
etransclem1.h | ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
etransclem1.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
Ref | Expression |
---|---|
etransclem1 | ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ℂ) | |
2 | 1 | sselda 3944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
3 | etransclem1.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
4 | 3 | elfzelzd 13442 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
5 | 4 | zcnd 12608 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ ℂ) |
7 | 2, 6 | subcld 11512 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 − 𝐽) ∈ ℂ) |
8 | etransclem1.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
9 | nnm1nn0 12454 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 − 1) ∈ ℕ0) |
11 | 8 | nnnn0d 12473 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
12 | 10, 11 | ifcld 4532 | . . . . 5 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
14 | 7, 13 | expcld 14051 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
15 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) | |
16 | 14, 15 | fmptd 7062 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ) |
17 | etransclem1.h | . . . . 5 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
18 | oveq2 7365 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → (𝑥 − 𝑗) = (𝑥 − 𝑛)) | |
19 | eqeq1 2740 | . . . . . . . . 9 ⊢ (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0)) | |
20 | 19 | ifbid 4509 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑛 = 0, (𝑃 − 1), 𝑃)) |
21 | 18, 20 | oveq12d 7375 | . . . . . . 7 ⊢ (𝑗 = 𝑛 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) |
22 | 21 | mpteq2dv 5207 | . . . . . 6 ⊢ (𝑗 = 𝑛 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
23 | 22 | cbvmptv 5218 | . . . . 5 ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
24 | 17, 23 | eqtri 2764 | . . . 4 ⊢ 𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
25 | oveq2 7365 | . . . . . 6 ⊢ (𝑛 = 𝐽 → (𝑥 − 𝑛) = (𝑥 − 𝐽)) | |
26 | eqeq1 2740 | . . . . . . 7 ⊢ (𝑛 = 𝐽 → (𝑛 = 0 ↔ 𝐽 = 0)) | |
27 | 26 | ifbid 4509 | . . . . . 6 ⊢ (𝑛 = 𝐽 → if(𝑛 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
28 | 25, 27 | oveq12d 7375 | . . . . 5 ⊢ (𝑛 = 𝐽 → ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) |
29 | 28 | mpteq2dv 5207 | . . . 4 ⊢ (𝑛 = 𝐽 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
30 | cnex 11132 | . . . . . 6 ⊢ ℂ ∈ V | |
31 | 30 | ssex 5278 | . . . . 5 ⊢ (𝑋 ⊆ ℂ → 𝑋 ∈ V) |
32 | mptexg 7171 | . . . . 5 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) | |
33 | 1, 31, 32 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
34 | 24, 29, 3, 33 | fvmptd3 6971 | . . 3 ⊢ (𝜑 → (𝐻‘𝐽) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
35 | 34 | feq1d 6653 | . 2 ⊢ (𝜑 → ((𝐻‘𝐽):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ)) |
36 | 16, 35 | mpbird 256 | 1 ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ⊆ wss 3910 ifcif 4486 ↦ cmpt 5188 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 0cc0 11051 1c1 11052 − cmin 11385 ℕcn 12153 ℕ0cn0 12413 ...cfz 13424 ↑cexp 13967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-seq 13907 df-exp 13968 |
This theorem is referenced by: etransclem29 44494 |
Copyright terms: Public domain | W3C validator |