Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem1 | Structured version Visualization version GIF version |
Description: 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem1.x | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
etransclem1.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
etransclem1.h | ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
etransclem1.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
Ref | Expression |
---|---|
etransclem1 | ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ℂ) | |
2 | 1 | sselda 3921 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
3 | etransclem1.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
4 | 3 | elfzelzd 13257 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
5 | 4 | zcnd 12427 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ ℂ) |
7 | 2, 6 | subcld 11332 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 − 𝐽) ∈ ℂ) |
8 | etransclem1.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
9 | nnm1nn0 12274 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 − 1) ∈ ℕ0) |
11 | 8 | nnnn0d 12293 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
12 | 10, 11 | ifcld 4505 | . . . . 5 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
14 | 7, 13 | expcld 13864 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
15 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) | |
16 | 14, 15 | fmptd 6988 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ) |
17 | etransclem1.h | . . . . 5 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
18 | oveq2 7283 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → (𝑥 − 𝑗) = (𝑥 − 𝑛)) | |
19 | eqeq1 2742 | . . . . . . . . 9 ⊢ (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0)) | |
20 | 19 | ifbid 4482 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑛 = 0, (𝑃 − 1), 𝑃)) |
21 | 18, 20 | oveq12d 7293 | . . . . . . 7 ⊢ (𝑗 = 𝑛 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) |
22 | 21 | mpteq2dv 5176 | . . . . . 6 ⊢ (𝑗 = 𝑛 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
23 | 22 | cbvmptv 5187 | . . . . 5 ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
24 | 17, 23 | eqtri 2766 | . . . 4 ⊢ 𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
25 | oveq2 7283 | . . . . . 6 ⊢ (𝑛 = 𝐽 → (𝑥 − 𝑛) = (𝑥 − 𝐽)) | |
26 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑛 = 𝐽 → (𝑛 = 0 ↔ 𝐽 = 0)) | |
27 | 26 | ifbid 4482 | . . . . . 6 ⊢ (𝑛 = 𝐽 → if(𝑛 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
28 | 25, 27 | oveq12d 7293 | . . . . 5 ⊢ (𝑛 = 𝐽 → ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) |
29 | 28 | mpteq2dv 5176 | . . . 4 ⊢ (𝑛 = 𝐽 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
30 | cnex 10952 | . . . . . 6 ⊢ ℂ ∈ V | |
31 | 30 | ssex 5245 | . . . . 5 ⊢ (𝑋 ⊆ ℂ → 𝑋 ∈ V) |
32 | mptexg 7097 | . . . . 5 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) | |
33 | 1, 31, 32 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
34 | 24, 29, 3, 33 | fvmptd3 6898 | . . 3 ⊢ (𝜑 → (𝐻‘𝐽) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
35 | 34 | feq1d 6585 | . 2 ⊢ (𝜑 → ((𝐻‘𝐽):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ)) |
36 | 16, 35 | mpbird 256 | 1 ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ifcif 4459 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 − cmin 11205 ℕcn 11973 ℕ0cn0 12233 ...cfz 13239 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-seq 13722 df-exp 13783 |
This theorem is referenced by: etransclem29 43804 |
Copyright terms: Public domain | W3C validator |