| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem1 | Structured version Visualization version GIF version | ||
| Description: 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem1.x | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| etransclem1.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| etransclem1.h | ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
| etransclem1.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
| Ref | Expression |
|---|---|
| etransclem1 | ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | etransclem1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ℂ) | |
| 2 | 1 | sselda 3963 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
| 3 | etransclem1.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
| 4 | 3 | elfzelzd 13547 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 5 | 4 | zcnd 12703 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ ℂ) |
| 7 | 2, 6 | subcld 11599 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 − 𝐽) ∈ ℂ) |
| 8 | etransclem1.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 9 | nnm1nn0 12547 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 − 1) ∈ ℕ0) |
| 11 | 8 | nnnn0d 12567 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
| 12 | 10, 11 | ifcld 4552 | . . . . 5 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
| 14 | 7, 13 | expcld 14169 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
| 15 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) | |
| 16 | 14, 15 | fmptd 7109 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ) |
| 17 | etransclem1.h | . . . . 5 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
| 18 | oveq2 7418 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → (𝑥 − 𝑗) = (𝑥 − 𝑛)) | |
| 19 | eqeq1 2740 | . . . . . . . . 9 ⊢ (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0)) | |
| 20 | 19 | ifbid 4529 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑛 = 0, (𝑃 − 1), 𝑃)) |
| 21 | 18, 20 | oveq12d 7428 | . . . . . . 7 ⊢ (𝑗 = 𝑛 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) |
| 22 | 21 | mpteq2dv 5220 | . . . . . 6 ⊢ (𝑗 = 𝑛 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
| 23 | 22 | cbvmptv 5230 | . . . . 5 ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
| 24 | 17, 23 | eqtri 2759 | . . . 4 ⊢ 𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
| 25 | oveq2 7418 | . . . . . 6 ⊢ (𝑛 = 𝐽 → (𝑥 − 𝑛) = (𝑥 − 𝐽)) | |
| 26 | eqeq1 2740 | . . . . . . 7 ⊢ (𝑛 = 𝐽 → (𝑛 = 0 ↔ 𝐽 = 0)) | |
| 27 | 26 | ifbid 4529 | . . . . . 6 ⊢ (𝑛 = 𝐽 → if(𝑛 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
| 28 | 25, 27 | oveq12d 7428 | . . . . 5 ⊢ (𝑛 = 𝐽 → ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) |
| 29 | 28 | mpteq2dv 5220 | . . . 4 ⊢ (𝑛 = 𝐽 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
| 30 | cnex 11215 | . . . . . 6 ⊢ ℂ ∈ V | |
| 31 | 30 | ssex 5296 | . . . . 5 ⊢ (𝑋 ⊆ ℂ → 𝑋 ∈ V) |
| 32 | mptexg 7218 | . . . . 5 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) | |
| 33 | 1, 31, 32 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
| 34 | 24, 29, 3, 33 | fvmptd3 7014 | . . 3 ⊢ (𝜑 → (𝐻‘𝐽) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
| 35 | 34 | feq1d 6695 | . 2 ⊢ (𝜑 → ((𝐻‘𝐽):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ)) |
| 36 | 16, 35 | mpbird 257 | 1 ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ifcif 4505 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 − cmin 11471 ℕcn 12245 ℕ0cn0 12506 ...cfz 13529 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: etransclem29 46259 |
| Copyright terms: Public domain | W3C validator |