Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem1 Structured version   Visualization version   GIF version

Theorem etransclem1 44466
Description: 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem1.x (𝜑𝑋 ⊆ ℂ)
etransclem1.p (𝜑𝑃 ∈ ℕ)
etransclem1.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem1.j (𝜑𝐽 ∈ (0...𝑀))
Assertion
Ref Expression
etransclem1 (𝜑 → (𝐻𝐽):𝑋⟶ℂ)
Distinct variable groups:   𝑥,𝐽   𝑗,𝑀   𝑃,𝑗   𝑗,𝑋,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝑃(𝑥)   𝐻(𝑥,𝑗)   𝐽(𝑗)   𝑀(𝑥)

Proof of Theorem etransclem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 etransclem1.x . . . . . 6 (𝜑𝑋 ⊆ ℂ)
21sselda 3944 . . . . 5 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
3 etransclem1.j . . . . . . . 8 (𝜑𝐽 ∈ (0...𝑀))
43elfzelzd 13442 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
54zcnd 12608 . . . . . 6 (𝜑𝐽 ∈ ℂ)
65adantr 481 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
72, 6subcld 11512 . . . 4 ((𝜑𝑥𝑋) → (𝑥𝐽) ∈ ℂ)
8 etransclem1.p . . . . . . 7 (𝜑𝑃 ∈ ℕ)
9 nnm1nn0 12454 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
108, 9syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
118nnnn0d 12473 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
1210, 11ifcld 4532 . . . . 5 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
1312adantr 481 . . . 4 ((𝜑𝑥𝑋) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
147, 13expcld 14051 . . 3 ((𝜑𝑥𝑋) → ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
15 eqid 2736 . . 3 (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
1614, 15fmptd 7062 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ)
17 etransclem1.h . . . . 5 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
18 oveq2 7365 . . . . . . . 8 (𝑗 = 𝑛 → (𝑥𝑗) = (𝑥𝑛))
19 eqeq1 2740 . . . . . . . . 9 (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0))
2019ifbid 4509 . . . . . . . 8 (𝑗 = 𝑛 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑛 = 0, (𝑃 − 1), 𝑃))
2118, 20oveq12d 7375 . . . . . . 7 (𝑗 = 𝑛 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))
2221mpteq2dv 5207 . . . . . 6 (𝑗 = 𝑛 → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))))
2322cbvmptv 5218 . . . . 5 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑛 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))))
2417, 23eqtri 2764 . . . 4 𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))))
25 oveq2 7365 . . . . . 6 (𝑛 = 𝐽 → (𝑥𝑛) = (𝑥𝐽))
26 eqeq1 2740 . . . . . . 7 (𝑛 = 𝐽 → (𝑛 = 0 ↔ 𝐽 = 0))
2726ifbid 4509 . . . . . 6 (𝑛 = 𝐽 → if(𝑛 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2825, 27oveq12d 7375 . . . . 5 (𝑛 = 𝐽 → ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
2928mpteq2dv 5207 . . . 4 (𝑛 = 𝐽 → (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
30 cnex 11132 . . . . . 6 ℂ ∈ V
3130ssex 5278 . . . . 5 (𝑋 ⊆ ℂ → 𝑋 ∈ V)
32 mptexg 7171 . . . . 5 (𝑋 ∈ V → (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
331, 31, 323syl 18 . . . 4 (𝜑 → (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
3424, 29, 3, 33fvmptd3 6971 . . 3 (𝜑 → (𝐻𝐽) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
3534feq1d 6653 . 2 (𝜑 → ((𝐻𝐽):𝑋⟶ℂ ↔ (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ))
3616, 35mpbird 256 1 (𝜑 → (𝐻𝐽):𝑋⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  wss 3910  ifcif 4486  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052  cmin 11385  cn 12153  0cn0 12413  ...cfz 13424  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-exp 13968
This theorem is referenced by:  etransclem29  44494
  Copyright terms: Public domain W3C validator