![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem1 | Structured version Visualization version GIF version |
Description: 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem1.x | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
etransclem1.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
etransclem1.h | ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
etransclem1.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
Ref | Expression |
---|---|
etransclem1 | ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ℂ) | |
2 | 1 | sselda 3978 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
3 | etransclem1.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
4 | 3 | elfzelzd 13550 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
5 | 4 | zcnd 12713 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
6 | 5 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ ℂ) |
7 | 2, 6 | subcld 11612 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 − 𝐽) ∈ ℂ) |
8 | etransclem1.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
9 | nnm1nn0 12559 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 − 1) ∈ ℕ0) |
11 | 8 | nnnn0d 12578 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
12 | 10, 11 | ifcld 4569 | . . . . 5 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
13 | 12 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
14 | 7, 13 | expcld 14159 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
15 | eqid 2726 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) | |
16 | 14, 15 | fmptd 7120 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ) |
17 | etransclem1.h | . . . . 5 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
18 | oveq2 7424 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → (𝑥 − 𝑗) = (𝑥 − 𝑛)) | |
19 | eqeq1 2730 | . . . . . . . . 9 ⊢ (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0)) | |
20 | 19 | ifbid 4546 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑛 = 0, (𝑃 − 1), 𝑃)) |
21 | 18, 20 | oveq12d 7434 | . . . . . . 7 ⊢ (𝑗 = 𝑛 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) |
22 | 21 | mpteq2dv 5247 | . . . . . 6 ⊢ (𝑗 = 𝑛 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
23 | 22 | cbvmptv 5258 | . . . . 5 ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
24 | 17, 23 | eqtri 2754 | . . . 4 ⊢ 𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
25 | oveq2 7424 | . . . . . 6 ⊢ (𝑛 = 𝐽 → (𝑥 − 𝑛) = (𝑥 − 𝐽)) | |
26 | eqeq1 2730 | . . . . . . 7 ⊢ (𝑛 = 𝐽 → (𝑛 = 0 ↔ 𝐽 = 0)) | |
27 | 26 | ifbid 4546 | . . . . . 6 ⊢ (𝑛 = 𝐽 → if(𝑛 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
28 | 25, 27 | oveq12d 7434 | . . . . 5 ⊢ (𝑛 = 𝐽 → ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) |
29 | 28 | mpteq2dv 5247 | . . . 4 ⊢ (𝑛 = 𝐽 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
30 | cnex 11230 | . . . . . 6 ⊢ ℂ ∈ V | |
31 | 30 | ssex 5318 | . . . . 5 ⊢ (𝑋 ⊆ ℂ → 𝑋 ∈ V) |
32 | mptexg 7230 | . . . . 5 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) | |
33 | 1, 31, 32 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
34 | 24, 29, 3, 33 | fvmptd3 7024 | . . 3 ⊢ (𝜑 → (𝐻‘𝐽) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
35 | 34 | feq1d 6705 | . 2 ⊢ (𝜑 → ((𝐻‘𝐽):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ)) |
36 | 16, 35 | mpbird 256 | 1 ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3946 ifcif 4523 ↦ cmpt 5228 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 ℂcc 11147 0cc0 11149 1c1 11150 − cmin 11485 ℕcn 12258 ℕ0cn0 12518 ...cfz 13532 ↑cexp 14075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-seq 14016 df-exp 14076 |
This theorem is referenced by: etransclem29 45920 |
Copyright terms: Public domain | W3C validator |