Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem1 | Structured version Visualization version GIF version |
Description: 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem1.x | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
etransclem1.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
etransclem1.h | ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
etransclem1.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
Ref | Expression |
---|---|
etransclem1 | ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ℂ) | |
2 | 1 | sselda 3893 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
3 | etransclem1.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
4 | 3 | elfzelzd 12950 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
5 | 4 | zcnd 12120 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
6 | 5 | adantr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ ℂ) |
7 | 2, 6 | subcld 11028 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 − 𝐽) ∈ ℂ) |
8 | etransclem1.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
9 | nnm1nn0 11968 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 − 1) ∈ ℕ0) |
11 | 8 | nnnn0d 11987 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
12 | 10, 11 | ifcld 4467 | . . . . 5 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
13 | 12 | adantr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) |
14 | 7, 13 | expcld 13553 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
15 | eqid 2759 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) | |
16 | 14, 15 | fmptd 6870 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ) |
17 | etransclem1.h | . . . . 5 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
18 | oveq2 7159 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → (𝑥 − 𝑗) = (𝑥 − 𝑛)) | |
19 | eqeq1 2763 | . . . . . . . . 9 ⊢ (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0)) | |
20 | 19 | ifbid 4444 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑛 = 0, (𝑃 − 1), 𝑃)) |
21 | 18, 20 | oveq12d 7169 | . . . . . . 7 ⊢ (𝑗 = 𝑛 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) |
22 | 21 | mpteq2dv 5129 | . . . . . 6 ⊢ (𝑗 = 𝑛 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
23 | 22 | cbvmptv 5136 | . . . . 5 ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
24 | 17, 23 | eqtri 2782 | . . . 4 ⊢ 𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))) |
25 | oveq2 7159 | . . . . . 6 ⊢ (𝑛 = 𝐽 → (𝑥 − 𝑛) = (𝑥 − 𝐽)) | |
26 | eqeq1 2763 | . . . . . . 7 ⊢ (𝑛 = 𝐽 → (𝑛 = 0 ↔ 𝐽 = 0)) | |
27 | 26 | ifbid 4444 | . . . . . 6 ⊢ (𝑛 = 𝐽 → if(𝑛 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
28 | 25, 27 | oveq12d 7169 | . . . . 5 ⊢ (𝑛 = 𝐽 → ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) |
29 | 28 | mpteq2dv 5129 | . . . 4 ⊢ (𝑛 = 𝐽 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
30 | cnex 10649 | . . . . . 6 ⊢ ℂ ∈ V | |
31 | 30 | ssex 5192 | . . . . 5 ⊢ (𝑋 ⊆ ℂ → 𝑋 ∈ V) |
32 | mptexg 6976 | . . . . 5 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) | |
33 | 1, 31, 32 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
34 | 24, 29, 3, 33 | fvmptd3 6783 | . . 3 ⊢ (𝜑 → (𝐻‘𝐽) = (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
35 | 34 | feq1d 6484 | . 2 ⊢ (𝜑 → ((𝐻‘𝐽):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ)) |
36 | 16, 35 | mpbird 260 | 1 ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ⊆ wss 3859 ifcif 4421 ↦ cmpt 5113 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 ℂcc 10566 0cc0 10568 1c1 10569 − cmin 10901 ℕcn 11667 ℕ0cn0 11927 ...cfz 12932 ↑cexp 13472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-n0 11928 df-z 12014 df-uz 12276 df-fz 12933 df-seq 13412 df-exp 13473 |
This theorem is referenced by: etransclem29 43264 |
Copyright terms: Public domain | W3C validator |