MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkcl Structured version   Visualization version   GIF version

Theorem wlkcl 27411
Description: A walk has length ♯(𝐹), which is an integer. Formerly proven for an Eulerian path, see eupthcl 28001. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.)
Assertion
Ref Expression
wlkcl (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)

Proof of Theorem wlkcl
StepHypRef Expression
1 eqid 2824 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 27410 . 2 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
3 lencl 13888 . 2 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐹) ∈ ℕ0)
42, 3syl 17 1 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115   class class class wbr 5053  dom cdm 5543  cfv 6344  0cn0 11897  chash 13698  Word cword 13869  iEdgciedg 26796  Walkscwlks 27392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11898  df-z 11982  df-uz 12244  df-fz 12898  df-fzo 13041  df-hash 13699  df-word 13870  df-wlks 27395
This theorem is referenced by:  wlklenvp1  27414  wlkn0  27416  wlklenvm1  27417  uspgr2wlkeqi  27443  wlklenvclwlk  27450  wlklenvclwlkOLD  27451  wlkepvtx  27456  wlkonwlk1l  27459  wlkonl1iedg  27461  redwlk  27468  wlkp1lem1  27469  wlkp1lem7  27475  wlkp1  27477  pthdadjvtx  27525  spthdep  27529  pthdepisspth  27530  spthonepeq  27547  crctcshlem1  27609  wlklnwwlkln1  27660  wlknwwlksnbij  27680  clwlkclwwlkflem  27795  eupthcl  28001  eupthp1  28007  eupth2lem3  28027  eupth2lems  28029  eupth2  28030  eucrct2eupth1  28035  revwlk  32431  pthhashvtx  32434  usgrgt2cycl  32437  usgrcyclgt2v  32438  acycgr1v  32456
  Copyright terms: Public domain W3C validator