MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkcl Structured version   Visualization version   GIF version

Theorem wlkcl 29543
Description: A walk has length ♯(𝐹), which is an integer. Formerly proven for an Eulerian path, see eupthcl 30139. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.)
Assertion
Ref Expression
wlkcl (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)

Proof of Theorem wlkcl
StepHypRef Expression
1 eqid 2729 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 29542 . 2 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
3 lencl 14498 . 2 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐹) ∈ ℕ0)
42, 3syl 17 1 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5107  dom cdm 5638  cfv 6511  0cn0 12442  chash 14295  Word cword 14478  iEdgciedg 28924  Walkscwlks 29524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-wlks 29527
This theorem is referenced by:  wlklenvp1  29546  wlkn0  29549  wlklenvm1  29550  uspgr2wlkeqi  29576  wlklenvclwlk  29583  wlkepvtx  29588  wlkonwlk1l  29591  wlkonl1iedg  29593  redwlk  29600  wlkp1lem1  29601  wlkp1lem7  29607  wlkp1  29609  pthdadjvtx  29658  dfpth2  29659  spthdep  29664  pthdepisspth  29665  spthonepeq  29682  cyclnumvtx  29730  crctcshlem1  29747  wlklnwwlkln1  29798  wlknwwlksnbij  29818  clwlkclwwlkflem  29933  eupthcl  30139  eupthp1  30145  eupth2lem3  30165  eupth2lems  30167  eupth2  30168  eucrct2eupth1  30173  revwlk  35112  pthhashvtx  35115  usgrgt2cycl  35117  usgrcyclgt2v  35118  acycgr1v  35136  upgrimpthslem2  47908  upgrimpths  47909  upgrimcycls  47911
  Copyright terms: Public domain W3C validator