| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkcl | Structured version Visualization version GIF version | ||
| Description: A walk has length ♯(𝐹), which is an integer. Formerly proven for an Eulerian path, see eupthcl 30180. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| Ref | Expression |
|---|---|
| wlkcl | ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 2 | 1 | wlkf 29586 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
| 3 | lencl 14432 | . 2 ⊢ (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐹) ∈ ℕ0) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5089 dom cdm 5614 ‘cfv 6477 ℕ0cn0 12373 ♯chash 14229 Word cword 14412 iEdgciedg 28968 Walkscwlks 29568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-wlks 29571 |
| This theorem is referenced by: wlklenvp1 29590 wlkn0 29592 wlklenvm1 29593 uspgr2wlkeqi 29619 wlklenvclwlk 29625 wlkepvtx 29630 wlkonwlk1l 29633 wlkonl1iedg 29635 redwlk 29642 wlkp1lem1 29643 wlkp1lem7 29649 wlkp1 29651 pthdadjvtx 29699 dfpth2 29700 spthdep 29705 pthdepisspth 29706 spthonepeq 29723 cyclnumvtx 29771 crctcshlem1 29788 wlklnwwlkln1 29839 wlknwwlksnbij 29859 clwlkclwwlkflem 29974 eupthcl 30180 eupthp1 30186 eupth2lem3 30206 eupth2lems 30208 eupth2 30209 eucrct2eupth1 30214 revwlk 35137 pthhashvtx 35140 usgrgt2cycl 35142 usgrcyclgt2v 35143 acycgr1v 35161 upgrimpthslem2 47918 upgrimpths 47919 upgrimcycls 47921 |
| Copyright terms: Public domain | W3C validator |