| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expdiv | Structured version Visualization version GIF version | ||
| Description: Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| expdiv | ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divrec 11917 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | |
| 2 | 1 | 3expb 1120 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| 4 | 3 | oveq1d 7425 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴 · (1 / 𝐵))↑𝑁)) |
| 5 | reccl 11908 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℂ) | |
| 6 | mulexp 14124 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (1 / 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁))) | |
| 7 | 5, 6 | syl3an2 1164 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁))) |
| 8 | simp2l 1200 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ) | |
| 9 | simp2r 1201 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ≠ 0) | |
| 10 | nn0z 12618 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 11 | 10 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
| 12 | exprec 14126 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵↑𝑁))) | |
| 13 | 8, 9, 11, 12 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵↑𝑁))) |
| 14 | 13 | oveq2d 7426 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴↑𝑁) · (1 / (𝐵↑𝑁)))) |
| 15 | expcl 14102 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) | |
| 16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| 17 | expcl 14102 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℂ) | |
| 18 | 17 | adantlr 715 | . . . . 5 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℂ) |
| 19 | 18 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℂ) |
| 20 | expne0i 14117 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵↑𝑁) ≠ 0) | |
| 21 | 8, 9, 11, 20 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ≠ 0) |
| 22 | 16, 19, 21 | divrecd 12025 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑁) / (𝐵↑𝑁)) = ((𝐴↑𝑁) · (1 / (𝐵↑𝑁)))) |
| 23 | 14, 22 | eqtr4d 2774 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴↑𝑁) / (𝐵↑𝑁))) |
| 24 | 4, 7, 23 | 3eqtrd 2775 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 · cmul 11139 / cdiv 11899 ℕ0cn0 12506 ℤcz 12593 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: expdivd 14183 stoweidlem7 46003 onetansqsecsq 49592 cotsqcscsq 49593 |
| Copyright terms: Public domain | W3C validator |