MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expdiv Structured version   Visualization version   GIF version

Theorem expdiv 14155
Description: Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expdiv ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))

Proof of Theorem expdiv
StepHypRef Expression
1 divrec 11939 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
213expb 1120 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
323adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
43oveq1d 7447 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴 · (1 / 𝐵))↑𝑁))
5 reccl 11930 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℂ)
6 mulexp 14143 . . 3 ((𝐴 ∈ ℂ ∧ (1 / 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴𝑁) · ((1 / 𝐵)↑𝑁)))
75, 6syl3an2 1164 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴𝑁) · ((1 / 𝐵)↑𝑁)))
8 simp2l 1199 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
9 simp2r 1200 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
10 nn0z 12640 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11103ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
12 exprec 14145 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵𝑁)))
138, 9, 11, 12syl3anc 1372 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵𝑁)))
1413oveq2d 7448 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴𝑁) · (1 / (𝐵𝑁))))
15 expcl 14121 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
16153adant2 1131 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
17 expcl 14121 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℂ)
1817adantlr 715 . . . . 5 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℂ)
19183adant1 1130 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℂ)
20 expne0i 14136 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵𝑁) ≠ 0)
218, 9, 11, 20syl3anc 1372 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ≠ 0)
2216, 19, 21divrecd 12047 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) / (𝐵𝑁)) = ((𝐴𝑁) · (1 / (𝐵𝑁))))
2314, 22eqtr4d 2779 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴𝑁) / (𝐵𝑁)))
244, 7, 233eqtrd 2780 1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   · cmul 11161   / cdiv 11921  0cn0 12528  cz 12615  cexp 14103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-seq 14044  df-exp 14104
This theorem is referenced by:  expdivd  14201  stoweidlem7  46027  onetansqsecsq  49335  cotsqcscsq  49336
  Copyright terms: Public domain W3C validator