![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expdiv | Structured version Visualization version GIF version |
Description: Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expdiv | ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrec 11115 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | |
2 | 1 | 3expb 1100 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
3 | 2 | 3adant3 1112 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
4 | 3 | oveq1d 6991 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴 · (1 / 𝐵))↑𝑁)) |
5 | reccl 11106 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℂ) | |
6 | mulexp 13283 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (1 / 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁))) | |
7 | 5, 6 | syl3an2 1144 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁))) |
8 | simp2l 1179 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ) | |
9 | simp2r 1180 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ≠ 0) | |
10 | nn0z 11818 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
11 | 10 | 3ad2ant3 1115 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
12 | exprec 13285 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵↑𝑁))) | |
13 | 8, 9, 11, 12 | syl3anc 1351 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵↑𝑁))) |
14 | 13 | oveq2d 6992 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴↑𝑁) · (1 / (𝐵↑𝑁)))) |
15 | expcl 13262 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) | |
16 | 15 | 3adant2 1111 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
17 | expcl 13262 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℂ) | |
18 | 17 | adantlr 702 | . . . . 5 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℂ) |
19 | 18 | 3adant1 1110 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℂ) |
20 | expne0i 13276 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵↑𝑁) ≠ 0) | |
21 | 8, 9, 11, 20 | syl3anc 1351 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ≠ 0) |
22 | 16, 19, 21 | divrecd 11220 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑁) / (𝐵↑𝑁)) = ((𝐴↑𝑁) · (1 / (𝐵↑𝑁)))) |
23 | 14, 22 | eqtr4d 2818 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴↑𝑁) / (𝐵↑𝑁))) |
24 | 4, 7, 23 | 3eqtrd 2819 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ≠ wne 2968 (class class class)co 6976 ℂcc 10333 0cc0 10335 1c1 10336 · cmul 10340 / cdiv 11098 ℕ0cn0 11707 ℤcz 11793 ↑cexp 13244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-n0 11708 df-z 11794 df-uz 12059 df-seq 13185 df-exp 13245 |
This theorem is referenced by: expdivd 13339 stoweidlem7 41721 onetansqsecsq 44225 cotsqcscsq 44226 |
Copyright terms: Public domain | W3C validator |