Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expdiv | Structured version Visualization version GIF version |
Description: Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expdiv | ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrec 11695 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | |
2 | 1 | 3expb 1120 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
4 | 3 | oveq1d 7322 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴 · (1 / 𝐵))↑𝑁)) |
5 | reccl 11686 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℂ) | |
6 | mulexp 13868 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (1 / 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁))) | |
7 | 5, 6 | syl3an2 1164 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁))) |
8 | simp2l 1199 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ) | |
9 | simp2r 1200 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ≠ 0) | |
10 | nn0z 12389 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
11 | 10 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
12 | exprec 13870 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵↑𝑁))) | |
13 | 8, 9, 11, 12 | syl3anc 1371 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵↑𝑁))) |
14 | 13 | oveq2d 7323 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴↑𝑁) · (1 / (𝐵↑𝑁)))) |
15 | expcl 13846 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) | |
16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
17 | expcl 13846 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℂ) | |
18 | 17 | adantlr 713 | . . . . 5 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℂ) |
19 | 18 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℂ) |
20 | expne0i 13861 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵↑𝑁) ≠ 0) | |
21 | 8, 9, 11, 20 | syl3anc 1371 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ≠ 0) |
22 | 16, 19, 21 | divrecd 11800 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑁) / (𝐵↑𝑁)) = ((𝐴↑𝑁) · (1 / (𝐵↑𝑁)))) |
23 | 14, 22 | eqtr4d 2779 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴↑𝑁) / (𝐵↑𝑁))) |
24 | 4, 7, 23 | 3eqtrd 2780 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 (class class class)co 7307 ℂcc 10915 0cc0 10917 1c1 10918 · cmul 10922 / cdiv 11678 ℕ0cn0 12279 ℤcz 12365 ↑cexp 13828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-seq 13768 df-exp 13829 |
This theorem is referenced by: expdivd 13924 stoweidlem7 43597 onetansqsecsq 46521 cotsqcscsq 46522 |
Copyright terms: Public domain | W3C validator |