Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expeqidd Structured version   Visualization version   GIF version

Theorem expeqidd 42341
Description: A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
expeqidd.a (𝜑𝐴 ∈ ℝ)
expeqidd.n (𝜑𝑁 ∈ (ℤ‘2))
expeqidd.0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
expeqidd (𝜑 → ((𝐴𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1)))

Proof of Theorem expeqidd
StepHypRef Expression
1 df-ne 2934 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 expeqidd.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
32recnd 11268 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
43ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝐴 ∈ ℂ)
5 simplr 768 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝐴 ≠ 0)
6 expeqidd.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘2))
7 eluz2nn 12903 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
86, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
98nnzd 12620 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
109ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝑁 ∈ ℤ)
114, 5, 10expm1d 14179 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = ((𝐴𝑁) / 𝐴))
12 simpr 484 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴𝑁) = 𝐴)
1312oveq1d 7425 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → ((𝐴𝑁) / 𝐴) = (𝐴 / 𝐴))
144, 5dividd 12020 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴 / 𝐴) = 1)
1511, 13, 143eqtrd 2775 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = 1)
162adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℝ)
17 uz2m1nn 12944 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
186, 17syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℕ)
1918adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (𝑁 − 1) ∈ ℕ)
20 expeqidd.0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
2120adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 0 ≤ 𝐴)
2216, 19, 21expeq1d 42340 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((𝐴↑(𝑁 − 1)) = 1 ↔ 𝐴 = 1))
2322biimpa 476 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ (𝐴↑(𝑁 − 1)) = 1) → 𝐴 = 1)
2415, 23syldan 591 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝐴 = 1)
2524an32s 652 . . . . . 6 (((𝜑 ∧ (𝐴𝑁) = 𝐴) ∧ 𝐴 ≠ 0) → 𝐴 = 1)
2625ex 412 . . . . 5 ((𝜑 ∧ (𝐴𝑁) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1))
271, 26biimtrrid 243 . . . 4 ((𝜑 ∧ (𝐴𝑁) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1))
2827orrd 863 . . 3 ((𝜑 ∧ (𝐴𝑁) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1))
2928ex 412 . 2 (𝜑 → ((𝐴𝑁) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1)))
3080expd 14162 . . . 4 (𝜑 → (0↑𝑁) = 0)
31 oveq1 7417 . . . . 5 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
32 id 22 . . . . 5 (𝐴 = 0 → 𝐴 = 0)
3331, 32eqeq12d 2752 . . . 4 (𝐴 = 0 → ((𝐴𝑁) = 𝐴 ↔ (0↑𝑁) = 0))
3430, 33syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 0 → (𝐴𝑁) = 𝐴))
35 1exp 14114 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
369, 35syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
37 oveq1 7417 . . . . 5 (𝐴 = 1 → (𝐴𝑁) = (1↑𝑁))
38 id 22 . . . . 5 (𝐴 = 1 → 𝐴 = 1)
3937, 38eqeq12d 2752 . . . 4 (𝐴 = 1 → ((𝐴𝑁) = 𝐴 ↔ (1↑𝑁) = 1))
4036, 39syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 1 → (𝐴𝑁) = 𝐴))
4134, 40jaod 859 . 2 (𝜑 → ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴𝑁) = 𝐴))
4229, 41impbid 212 1 (𝜑 → ((𝐴𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  cz 12593  cuz 12857  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator