Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expeqidd Structured version   Visualization version   GIF version

Theorem expeqidd 42339
Description: A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
expeqidd.a (𝜑𝐴 ∈ ℝ)
expeqidd.n (𝜑𝑁 ∈ (ℤ‘2))
expeqidd.0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
expeqidd (𝜑 → ((𝐴𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1)))

Proof of Theorem expeqidd
StepHypRef Expression
1 df-ne 2939 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 expeqidd.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
32recnd 11287 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
43ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝐴 ∈ ℂ)
5 simplr 769 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝐴 ≠ 0)
6 expeqidd.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘2))
7 eluz2nn 12922 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
86, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
98nnzd 12638 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
109ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝑁 ∈ ℤ)
114, 5, 10expm1d 14193 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = ((𝐴𝑁) / 𝐴))
12 simpr 484 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴𝑁) = 𝐴)
1312oveq1d 7446 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → ((𝐴𝑁) / 𝐴) = (𝐴 / 𝐴))
144, 5dividd 12039 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴 / 𝐴) = 1)
1511, 13, 143eqtrd 2779 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = 1)
162adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℝ)
17 uz2m1nn 12963 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
186, 17syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℕ)
1918adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (𝑁 − 1) ∈ ℕ)
20 expeqidd.0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
2120adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 0 ≤ 𝐴)
2216, 19, 21expeq1d 42338 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((𝐴↑(𝑁 − 1)) = 1 ↔ 𝐴 = 1))
2322biimpa 476 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ (𝐴↑(𝑁 − 1)) = 1) → 𝐴 = 1)
2415, 23syldan 591 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝐴 = 1)
2524an32s 652 . . . . . 6 (((𝜑 ∧ (𝐴𝑁) = 𝐴) ∧ 𝐴 ≠ 0) → 𝐴 = 1)
2625ex 412 . . . . 5 ((𝜑 ∧ (𝐴𝑁) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1))
271, 26biimtrrid 243 . . . 4 ((𝜑 ∧ (𝐴𝑁) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1))
2827orrd 863 . . 3 ((𝜑 ∧ (𝐴𝑁) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1))
2928ex 412 . 2 (𝜑 → ((𝐴𝑁) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1)))
3080expd 14176 . . . 4 (𝜑 → (0↑𝑁) = 0)
31 oveq1 7438 . . . . 5 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
32 id 22 . . . . 5 (𝐴 = 0 → 𝐴 = 0)
3331, 32eqeq12d 2751 . . . 4 (𝐴 = 0 → ((𝐴𝑁) = 𝐴 ↔ (0↑𝑁) = 0))
3430, 33syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 0 → (𝐴𝑁) = 𝐴))
35 1exp 14129 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
369, 35syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
37 oveq1 7438 . . . . 5 (𝐴 = 1 → (𝐴𝑁) = (1↑𝑁))
38 id 22 . . . . 5 (𝐴 = 1 → 𝐴 = 1)
3937, 38eqeq12d 2751 . . . 4 (𝐴 = 1 → ((𝐴𝑁) = 𝐴 ↔ (1↑𝑁) = 1))
4036, 39syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 1 → (𝐴𝑁) = 𝐴))
4134, 40jaod 859 . 2 (𝜑 → ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴𝑁) = 𝐴))
4229, 41impbid 212 1 (𝜑 → ((𝐴𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  cz 12611  cuz 12876  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator