| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expeqidd | Structured version Visualization version GIF version | ||
| Description: A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025.) |
| Ref | Expression |
|---|---|
| expeqidd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| expeqidd.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| expeqidd.0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| expeqidd | ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2927 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
| 2 | expeqidd.a | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 2 | recnd 11209 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 4 | 3 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝐴 ∈ ℂ) |
| 5 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝐴 ≠ 0) | |
| 6 | expeqidd.n | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
| 7 | eluz2nn 12854 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | 8 | nnzd 12563 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 10 | 9 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝑁 ∈ ℤ) |
| 11 | 4, 5, 10 | expm1d 14128 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) |
| 12 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴↑𝑁) = 𝐴) | |
| 13 | 12 | oveq1d 7405 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → ((𝐴↑𝑁) / 𝐴) = (𝐴 / 𝐴)) |
| 14 | 4, 5 | dividd 11963 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴 / 𝐴) = 1) |
| 15 | 11, 13, 14 | 3eqtrd 2769 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = 1) |
| 16 | 2 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ) |
| 17 | uz2m1nn 12889 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
| 18 | 6, 17 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 − 1) ∈ ℕ) |
| 19 | 18 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝑁 − 1) ∈ ℕ) |
| 20 | expeqidd.0 | . . . . . . . . . . 11 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 21 | 20 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤ 𝐴) |
| 22 | 16, 19, 21 | expeq1d 42319 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((𝐴↑(𝑁 − 1)) = 1 ↔ 𝐴 = 1)) |
| 23 | 22 | biimpa 476 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑(𝑁 − 1)) = 1) → 𝐴 = 1) |
| 24 | 15, 23 | syldan 591 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝐴 = 1) |
| 25 | 24 | an32s 652 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐴↑𝑁) = 𝐴) ∧ 𝐴 ≠ 0) → 𝐴 = 1) |
| 26 | 25 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1)) |
| 27 | 1, 26 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1)) |
| 28 | 27 | orrd 863 | . . 3 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1)) |
| 29 | 28 | ex 412 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1))) |
| 30 | 8 | 0expd 14111 | . . . 4 ⊢ (𝜑 → (0↑𝑁) = 0) |
| 31 | oveq1 7397 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) | |
| 32 | id 22 | . . . . 5 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
| 33 | 31, 32 | eqeq12d 2746 | . . . 4 ⊢ (𝐴 = 0 → ((𝐴↑𝑁) = 𝐴 ↔ (0↑𝑁) = 0)) |
| 34 | 30, 33 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → (𝐴 = 0 → (𝐴↑𝑁) = 𝐴)) |
| 35 | 1exp 14063 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
| 36 | 9, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (1↑𝑁) = 1) |
| 37 | oveq1 7397 | . . . . 5 ⊢ (𝐴 = 1 → (𝐴↑𝑁) = (1↑𝑁)) | |
| 38 | id 22 | . . . . 5 ⊢ (𝐴 = 1 → 𝐴 = 1) | |
| 39 | 37, 38 | eqeq12d 2746 | . . . 4 ⊢ (𝐴 = 1 → ((𝐴↑𝑁) = 𝐴 ↔ (1↑𝑁) = 1)) |
| 40 | 36, 39 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → (𝐴 = 1 → (𝐴↑𝑁) = 𝐴)) |
| 41 | 34, 40 | jaod 859 | . 2 ⊢ (𝜑 → ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴↑𝑁) = 𝐴)) |
| 42 | 29, 41 | impbid 212 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 ≤ cle 11216 − cmin 11412 / cdiv 11842 ℕcn 12193 2c2 12248 ℤcz 12536 ℤ≥cuz 12800 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |