![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > expeqidd | Structured version Visualization version GIF version |
Description: A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025.) |
Ref | Expression |
---|---|
expeqidd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
expeqidd.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
expeqidd.0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
expeqidd | ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
2 | expeqidd.a | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | recnd 11318 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
4 | 3 | ad2antrr 725 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝐴 ∈ ℂ) |
5 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝐴 ≠ 0) | |
6 | expeqidd.n | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
7 | eluz2nn 12949 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
9 | 8 | nnzd 12666 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | 9 | ad2antrr 725 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝑁 ∈ ℤ) |
11 | 4, 5, 10 | expm1d 14206 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) |
12 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴↑𝑁) = 𝐴) | |
13 | 12 | oveq1d 7463 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → ((𝐴↑𝑁) / 𝐴) = (𝐴 / 𝐴)) |
14 | 4, 5 | dividd 12068 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴 / 𝐴) = 1) |
15 | 11, 13, 14 | 3eqtrd 2784 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = 1) |
16 | 2 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ) |
17 | uz2m1nn 12988 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
18 | 6, 17 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 − 1) ∈ ℕ) |
19 | 18 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝑁 − 1) ∈ ℕ) |
20 | expeqidd.0 | . . . . . . . . . . 11 ⊢ (𝜑 → 0 ≤ 𝐴) | |
21 | 20 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤ 𝐴) |
22 | 16, 19, 21 | expeq1d 42311 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((𝐴↑(𝑁 − 1)) = 1 ↔ 𝐴 = 1)) |
23 | 22 | biimpa 476 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑(𝑁 − 1)) = 1) → 𝐴 = 1) |
24 | 15, 23 | syldan 590 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝐴 = 1) |
25 | 24 | an32s 651 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐴↑𝑁) = 𝐴) ∧ 𝐴 ≠ 0) → 𝐴 = 1) |
26 | 25 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1)) |
27 | 1, 26 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1)) |
28 | 27 | orrd 862 | . . 3 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1)) |
29 | 28 | ex 412 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1))) |
30 | 8 | 0expd 14189 | . . . 4 ⊢ (𝜑 → (0↑𝑁) = 0) |
31 | oveq1 7455 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) | |
32 | id 22 | . . . . 5 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
33 | 31, 32 | eqeq12d 2756 | . . . 4 ⊢ (𝐴 = 0 → ((𝐴↑𝑁) = 𝐴 ↔ (0↑𝑁) = 0)) |
34 | 30, 33 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → (𝐴 = 0 → (𝐴↑𝑁) = 𝐴)) |
35 | 1exp 14142 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
36 | 9, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (1↑𝑁) = 1) |
37 | oveq1 7455 | . . . . 5 ⊢ (𝐴 = 1 → (𝐴↑𝑁) = (1↑𝑁)) | |
38 | id 22 | . . . . 5 ⊢ (𝐴 = 1 → 𝐴 = 1) | |
39 | 37, 38 | eqeq12d 2756 | . . . 4 ⊢ (𝐴 = 1 → ((𝐴↑𝑁) = 𝐴 ↔ (1↑𝑁) = 1)) |
40 | 36, 39 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → (𝐴 = 1 → (𝐴↑𝑁) = 𝐴)) |
41 | 34, 40 | jaod 858 | . 2 ⊢ (𝜑 → ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴↑𝑁) = 𝐴)) |
42 | 29, 41 | impbid 212 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 ≤ cle 11325 − cmin 11520 / cdiv 11947 ℕcn 12293 2c2 12348 ℤcz 12639 ℤ≥cuz 12903 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |