| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expeqidd | Structured version Visualization version GIF version | ||
| Description: A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025.) |
| Ref | Expression |
|---|---|
| expeqidd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| expeqidd.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| expeqidd.0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| expeqidd | ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
| 2 | expeqidd.a | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 2 | recnd 11202 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 4 | 3 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝐴 ∈ ℂ) |
| 5 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝐴 ≠ 0) | |
| 6 | expeqidd.n | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
| 7 | eluz2nn 12847 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | 8 | nnzd 12556 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 10 | 9 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝑁 ∈ ℤ) |
| 11 | 4, 5, 10 | expm1d 14121 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) |
| 12 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴↑𝑁) = 𝐴) | |
| 13 | 12 | oveq1d 7402 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → ((𝐴↑𝑁) / 𝐴) = (𝐴 / 𝐴)) |
| 14 | 4, 5 | dividd 11956 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴 / 𝐴) = 1) |
| 15 | 11, 13, 14 | 3eqtrd 2768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = 1) |
| 16 | 2 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ) |
| 17 | uz2m1nn 12882 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
| 18 | 6, 17 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 − 1) ∈ ℕ) |
| 19 | 18 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝑁 − 1) ∈ ℕ) |
| 20 | expeqidd.0 | . . . . . . . . . . 11 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 21 | 20 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤ 𝐴) |
| 22 | 16, 19, 21 | expeq1d 42312 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((𝐴↑(𝑁 − 1)) = 1 ↔ 𝐴 = 1)) |
| 23 | 22 | biimpa 476 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑(𝑁 − 1)) = 1) → 𝐴 = 1) |
| 24 | 15, 23 | syldan 591 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑁) = 𝐴) → 𝐴 = 1) |
| 25 | 24 | an32s 652 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐴↑𝑁) = 𝐴) ∧ 𝐴 ≠ 0) → 𝐴 = 1) |
| 26 | 25 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1)) |
| 27 | 1, 26 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1)) |
| 28 | 27 | orrd 863 | . . 3 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1)) |
| 29 | 28 | ex 412 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1))) |
| 30 | 8 | 0expd 14104 | . . . 4 ⊢ (𝜑 → (0↑𝑁) = 0) |
| 31 | oveq1 7394 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) | |
| 32 | id 22 | . . . . 5 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
| 33 | 31, 32 | eqeq12d 2745 | . . . 4 ⊢ (𝐴 = 0 → ((𝐴↑𝑁) = 𝐴 ↔ (0↑𝑁) = 0)) |
| 34 | 30, 33 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → (𝐴 = 0 → (𝐴↑𝑁) = 𝐴)) |
| 35 | 1exp 14056 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
| 36 | 9, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (1↑𝑁) = 1) |
| 37 | oveq1 7394 | . . . . 5 ⊢ (𝐴 = 1 → (𝐴↑𝑁) = (1↑𝑁)) | |
| 38 | id 22 | . . . . 5 ⊢ (𝐴 = 1 → 𝐴 = 1) | |
| 39 | 37, 38 | eqeq12d 2745 | . . . 4 ⊢ (𝐴 = 1 → ((𝐴↑𝑁) = 𝐴 ↔ (1↑𝑁) = 1)) |
| 40 | 36, 39 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → (𝐴 = 1 → (𝐴↑𝑁) = 𝐴)) |
| 41 | 34, 40 | jaod 859 | . 2 ⊢ (𝜑 → ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴↑𝑁) = 𝐴)) |
| 42 | 29, 41 | impbid 212 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 ℤcz 12529 ℤ≥cuz 12793 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |