Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expeqidd Structured version   Visualization version   GIF version

Theorem expeqidd 42357
Description: A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
expeqidd.a (𝜑𝐴 ∈ ℝ)
expeqidd.n (𝜑𝑁 ∈ (ℤ‘2))
expeqidd.0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
expeqidd (𝜑 → ((𝐴𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1)))

Proof of Theorem expeqidd
StepHypRef Expression
1 df-ne 2929 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 expeqidd.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
32recnd 11137 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
43ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝐴 ∈ ℂ)
5 simplr 768 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝐴 ≠ 0)
6 expeqidd.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘2))
7 eluz2nn 12783 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
86, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
98nnzd 12492 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
109ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝑁 ∈ ℤ)
114, 5, 10expm1d 14060 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = ((𝐴𝑁) / 𝐴))
12 simpr 484 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴𝑁) = 𝐴)
1312oveq1d 7361 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → ((𝐴𝑁) / 𝐴) = (𝐴 / 𝐴))
144, 5dividd 11892 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴 / 𝐴) = 1)
1511, 13, 143eqtrd 2770 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → (𝐴↑(𝑁 − 1)) = 1)
162adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℝ)
17 uz2m1nn 12818 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
186, 17syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℕ)
1918adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (𝑁 − 1) ∈ ℕ)
20 expeqidd.0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
2120adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 0 ≤ 𝐴)
2216, 19, 21expeq1d 42356 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((𝐴↑(𝑁 − 1)) = 1 ↔ 𝐴 = 1))
2322biimpa 476 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ (𝐴↑(𝑁 − 1)) = 1) → 𝐴 = 1)
2415, 23syldan 591 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ (𝐴𝑁) = 𝐴) → 𝐴 = 1)
2524an32s 652 . . . . . 6 (((𝜑 ∧ (𝐴𝑁) = 𝐴) ∧ 𝐴 ≠ 0) → 𝐴 = 1)
2625ex 412 . . . . 5 ((𝜑 ∧ (𝐴𝑁) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1))
271, 26biimtrrid 243 . . . 4 ((𝜑 ∧ (𝐴𝑁) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1))
2827orrd 863 . . 3 ((𝜑 ∧ (𝐴𝑁) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1))
2928ex 412 . 2 (𝜑 → ((𝐴𝑁) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1)))
3080expd 14043 . . . 4 (𝜑 → (0↑𝑁) = 0)
31 oveq1 7353 . . . . 5 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
32 id 22 . . . . 5 (𝐴 = 0 → 𝐴 = 0)
3331, 32eqeq12d 2747 . . . 4 (𝐴 = 0 → ((𝐴𝑁) = 𝐴 ↔ (0↑𝑁) = 0))
3430, 33syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 0 → (𝐴𝑁) = 𝐴))
35 1exp 13995 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
369, 35syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
37 oveq1 7353 . . . . 5 (𝐴 = 1 → (𝐴𝑁) = (1↑𝑁))
38 id 22 . . . . 5 (𝐴 = 1 → 𝐴 = 1)
3937, 38eqeq12d 2747 . . . 4 (𝐴 = 1 → ((𝐴𝑁) = 𝐴 ↔ (1↑𝑁) = 1))
4036, 39syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 1 → (𝐴𝑁) = 𝐴))
4134, 40jaod 859 . 2 (𝜑 → ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴𝑁) = 𝐴))
4229, 41impbid 212 1 (𝜑 → ((𝐴𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004  cle 11144  cmin 11341   / cdiv 11771  cn 12122  2c2 12177  cz 12465  cuz 12729  cexp 13965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-seq 13906  df-exp 13966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator