| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expeq1d | Structured version Visualization version GIF version | ||
| Description: A nonnegative real number is one if and only if it is one when raised to a positive integer. (Contributed by SN, 3-Jul-2025.) |
| Ref | Expression |
|---|---|
| expeq1d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| expeq1d.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| expeq1d.0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| expeq1d | ⊢ (𝜑 → ((𝐴↑𝑁) = 1 ↔ 𝐴 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expeq1d.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nnzd 12516 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 3 | 1exp 14016 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (1↑𝑁) = 1) |
| 5 | 4 | eqeq2d 2740 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) = (1↑𝑁) ↔ (𝐴↑𝑁) = 1)) |
| 6 | expeq1d.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → 𝐴 ∈ ℝ) |
| 8 | expeq1d.0 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → 0 ≤ 𝐴) |
| 10 | 0ne1 12217 | . . . . . . . . . . 11 ⊢ 0 ≠ 1 | |
| 11 | 10 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ≠ 1) |
| 12 | 1 | 0expd 14064 | . . . . . . . . . 10 ⊢ (𝜑 → (0↑𝑁) = 0) |
| 13 | 11, 12, 4 | 3netr4d 3002 | . . . . . . . . 9 ⊢ (𝜑 → (0↑𝑁) ≠ (1↑𝑁)) |
| 14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → (0↑𝑁) ≠ (1↑𝑁)) |
| 15 | oveq1 7360 | . . . . . . . . . . 11 ⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) | |
| 16 | 15 | eqeq1d 2731 | . . . . . . . . . 10 ⊢ (𝐴 = 0 → ((𝐴↑𝑁) = (1↑𝑁) ↔ (0↑𝑁) = (1↑𝑁))) |
| 17 | 16 | biimpac 478 | . . . . . . . . 9 ⊢ (((𝐴↑𝑁) = (1↑𝑁) ∧ 𝐴 = 0) → (0↑𝑁) = (1↑𝑁)) |
| 18 | 17 | adantll 714 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) ∧ 𝐴 = 0) → (0↑𝑁) = (1↑𝑁)) |
| 19 | 14, 18 | mteqand 3016 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → 𝐴 ≠ 0) |
| 20 | 7, 9, 19 | ne0gt0d 11271 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → 0 < 𝐴) |
| 21 | 7, 20 | elrpd 12952 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → 𝐴 ∈ ℝ+) |
| 22 | 1rp 12915 | . . . . . 6 ⊢ 1 ∈ ℝ+ | |
| 23 | 22 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → 1 ∈ ℝ+) |
| 24 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → 𝑁 ∈ ℕ) |
| 25 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → (𝐴↑𝑁) = (1↑𝑁)) | |
| 26 | 21, 23, 24, 25 | exp11nnd 14186 | . . . 4 ⊢ ((𝜑 ∧ (𝐴↑𝑁) = (1↑𝑁)) → 𝐴 = 1) |
| 27 | 26 | ex 412 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) = (1↑𝑁) → 𝐴 = 1)) |
| 28 | 5, 27 | sylbird 260 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) = 1 → 𝐴 = 1)) |
| 29 | oveq1 7360 | . . . 4 ⊢ (𝐴 = 1 → (𝐴↑𝑁) = (1↑𝑁)) | |
| 30 | 29 | eqeq1d 2731 | . . 3 ⊢ (𝐴 = 1 → ((𝐴↑𝑁) = 1 ↔ (1↑𝑁) = 1)) |
| 31 | 4, 30 | syl5ibrcom 247 | . 2 ⊢ (𝜑 → (𝐴 = 1 → (𝐴↑𝑁) = 1)) |
| 32 | 28, 31 | impbid 212 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) = 1 ↔ 𝐴 = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 ≤ cle 11169 ℕcn 12146 ℤcz 12489 ℝ+crp 12911 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: expeqidd 42298 fiabv 42509 |
| Copyright terms: Public domain | W3C validator |