MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uz2m1nn Structured version   Visualization version   GIF version

Theorem uz2m1nn 12939
Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
uz2m1nn (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)

Proof of Theorem uz2m1nn
StepHypRef Expression
1 eluz2b1 12935 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
2 1z 12622 . . . 4 1 ∈ ℤ
3 znnsub 12638 . . . 4 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ))
42, 3mpan 690 . . 3 (𝑁 ∈ ℤ → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ))
54biimpa 476 . 2 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 − 1) ∈ ℕ)
61, 5sylbi 217 1 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  1c1 11130   < clt 11269  cmin 11466  cn 12240  2c2 12295  cz 12588  cuz 12852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853
This theorem is referenced by:  nn0ge2m1nnALT  12958  bernneq3  14249  pfxtrcfv0  14712  climcndslem1  15865  exprmfct  16723  oddprm  16830  pockthg  16926  vdwlem5  17005  vdwlem8  17008  efgs1b  19717  efgredlema  19721  wilthlem3  27032  ppiprm  27113  ppinprm  27114  chtprm  27115  chtnprm  27116  lgsval2lem  27270  lgsqrlem2  27310  lgseisenlem1  27338  lgseisenlem3  27340  lgsquadlem3  27345  rplogsumlem1  27447  rplogsumlem2  27448  rpvmasumlem  27450  clwwisshclwwslemlem  29994  umgr2cwwk2dif  30045  psgnfzto1stlem  33111  ballotlemic  34539  ballotlem1c  34540  signstfveq0  34609  expeqidd  42374  fltnltalem  42685  fltnlta  42686  jm3.1lem1  43041  jm3.1lem2  43042  trclfvdecomr  43752  itgsinexp  45984  stirlinglem12  46114  fourierdlem54  46189  fourierdlem102  46237  fourierdlem114  46249  blennngt2o2  48572
  Copyright terms: Public domain W3C validator