MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uz2m1nn Structured version   Visualization version   GIF version

Theorem uz2m1nn 12912
Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
uz2m1nn (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)

Proof of Theorem uz2m1nn
StepHypRef Expression
1 eluz2b1 12908 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
2 1z 12597 . . . 4 1 ∈ ℤ
3 znnsub 12613 . . . 4 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ))
42, 3mpan 687 . . 3 (𝑁 ∈ ℤ → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ))
54biimpa 476 . 2 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 − 1) ∈ ℕ)
61, 5sylbi 216 1 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105   class class class wbr 5148  cfv 6543  (class class class)co 7412  1c1 11114   < clt 11253  cmin 11449  cn 12217  2c2 12272  cz 12563  cuz 12827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-z 12564  df-uz 12828
This theorem is referenced by:  nn0ge2m1nnALT  12931  bernneq3  14199  pfxtrcfv0  14649  climcndslem1  15800  exprmfct  16646  oddprm  16748  pockthg  16844  vdwlem5  16923  vdwlem8  16926  efgs1b  19646  efgredlema  19650  wilthlem3  26811  ppiprm  26892  ppinprm  26893  chtprm  26894  chtnprm  26895  lgsval2lem  27047  lgsqrlem2  27087  lgseisenlem1  27115  lgseisenlem3  27117  lgsquadlem3  27122  rplogsumlem1  27224  rplogsumlem2  27225  rpvmasumlem  27227  clwwisshclwwslemlem  29534  umgr2cwwk2dif  29585  psgnfzto1stlem  32530  ballotlemic  33804  ballotlem1c  33805  signstfveq0  33887  fltnltalem  41707  fltnlta  41708  jm3.1lem1  42059  jm3.1lem2  42060  trclfvdecomr  42782  itgsinexp  44970  stirlinglem12  45100  fourierdlem54  45175  fourierdlem102  45223  fourierdlem114  45235  blennngt2o2  47366
  Copyright terms: Public domain W3C validator