![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uz2m1nn | Structured version Visualization version GIF version |
Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
uz2m1nn | ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b1 12958 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
2 | 1z 12644 | . . . 4 ⊢ 1 ∈ ℤ | |
3 | znnsub 12660 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ)) | |
4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝑁 ∈ ℤ → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ)) |
5 | 4 | biimpa 476 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 − 1) ∈ ℕ) |
6 | 1, 5 | sylbi 217 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 1c1 11153 < clt 11292 − cmin 11489 ℕcn 12263 2c2 12318 ℤcz 12610 ℤ≥cuz 12875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 |
This theorem is referenced by: nn0ge2m1nnALT 12981 bernneq3 14266 pfxtrcfv0 14728 climcndslem1 15881 exprmfct 16737 oddprm 16843 pockthg 16939 vdwlem5 17018 vdwlem8 17021 efgs1b 19768 efgredlema 19772 wilthlem3 27127 ppiprm 27208 ppinprm 27209 chtprm 27210 chtnprm 27211 lgsval2lem 27365 lgsqrlem2 27405 lgseisenlem1 27433 lgseisenlem3 27435 lgsquadlem3 27440 rplogsumlem1 27542 rplogsumlem2 27543 rpvmasumlem 27545 clwwisshclwwslemlem 30041 umgr2cwwk2dif 30092 psgnfzto1stlem 33102 ballotlemic 34487 ballotlem1c 34488 signstfveq0 34570 expeqidd 42338 fltnltalem 42648 fltnlta 42649 jm3.1lem1 43005 jm3.1lem2 43006 trclfvdecomr 43717 itgsinexp 45910 stirlinglem12 46040 fourierdlem54 46115 fourierdlem102 46163 fourierdlem114 46175 blennngt2o2 48441 |
Copyright terms: Public domain | W3C validator |