| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uz2m1nn | Structured version Visualization version GIF version | ||
| Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| uz2m1nn | ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b1 12927 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
| 2 | 1z 12614 | . . . 4 ⊢ 1 ∈ ℤ | |
| 3 | znnsub 12630 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ)) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝑁 ∈ ℤ → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ)) |
| 5 | 4 | biimpa 476 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 − 1) ∈ ℕ) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 1c1 11122 < clt 11261 − cmin 11458 ℕcn 12232 2c2 12287 ℤcz 12580 ℤ≥cuz 12844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-n0 12494 df-z 12581 df-uz 12845 |
| This theorem is referenced by: nn0ge2m1nnALT 12950 bernneq3 14237 pfxtrcfv0 14699 climcndslem1 15852 exprmfct 16708 oddprm 16815 pockthg 16911 vdwlem5 16990 vdwlem8 16993 efgs1b 19702 efgredlema 19706 wilthlem3 27016 ppiprm 27097 ppinprm 27098 chtprm 27099 chtnprm 27100 lgsval2lem 27254 lgsqrlem2 27294 lgseisenlem1 27322 lgseisenlem3 27324 lgsquadlem3 27329 rplogsumlem1 27431 rplogsumlem2 27432 rpvmasumlem 27434 clwwisshclwwslemlem 29926 umgr2cwwk2dif 29977 psgnfzto1stlem 33029 ballotlemic 34447 ballotlem1c 34448 signstfveq0 34530 expeqidd 42298 fltnltalem 42610 fltnlta 42611 jm3.1lem1 42966 jm3.1lem2 42967 trclfvdecomr 43677 itgsinexp 45914 stirlinglem12 46044 fourierdlem54 46119 fourierdlem102 46167 fourierdlem114 46179 blennngt2o2 48458 |
| Copyright terms: Public domain | W3C validator |