MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uz2m1nn Structured version   Visualization version   GIF version

Theorem uz2m1nn 12938
Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
uz2m1nn (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)

Proof of Theorem uz2m1nn
StepHypRef Expression
1 eluz2b1 12934 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
2 1z 12623 . . . 4 1 ∈ ℤ
3 znnsub 12639 . . . 4 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ))
42, 3mpan 689 . . 3 (𝑁 ∈ ℤ → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ))
54biimpa 476 . 2 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 − 1) ∈ ℕ)
61, 5sylbi 216 1 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099   class class class wbr 5148  cfv 6548  (class class class)co 7420  1c1 11140   < clt 11279  cmin 11475  cn 12243  2c2 12298  cz 12589  cuz 12853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-n0 12504  df-z 12590  df-uz 12854
This theorem is referenced by:  nn0ge2m1nnALT  12957  bernneq3  14226  pfxtrcfv0  14677  climcndslem1  15828  exprmfct  16675  oddprm  16779  pockthg  16875  vdwlem5  16954  vdwlem8  16957  efgs1b  19691  efgredlema  19695  wilthlem3  27015  ppiprm  27096  ppinprm  27097  chtprm  27098  chtnprm  27099  lgsval2lem  27253  lgsqrlem2  27293  lgseisenlem1  27321  lgseisenlem3  27323  lgsquadlem3  27328  rplogsumlem1  27430  rplogsumlem2  27431  rpvmasumlem  27433  clwwisshclwwslemlem  29836  umgr2cwwk2dif  29887  psgnfzto1stlem  32834  ballotlemic  34126  ballotlem1c  34127  signstfveq0  34209  fltnltalem  42086  fltnlta  42087  jm3.1lem1  42438  jm3.1lem2  42439  trclfvdecomr  43158  itgsinexp  45343  stirlinglem12  45473  fourierdlem54  45548  fourierdlem102  45596  fourierdlem114  45608  blennngt2o2  47665
  Copyright terms: Public domain W3C validator