| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem10 | Structured version Visualization version GIF version | ||
| Description: Lemma 10 for frgrncvvdeq 30256. (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) |
| Ref | Expression |
|---|---|
| frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
| frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
| frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
| frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
| frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
| frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
| Ref | Expression |
|---|---|
| frgrncvvdeqlem10 | ⊢ (𝜑 → 𝐴:𝐷–1-1-onto→𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrncvvdeq.v1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrncvvdeq.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | frgrncvvdeq.nx | . . 3 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
| 4 | frgrncvvdeq.ny | . . 3 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
| 5 | frgrncvvdeq.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 6 | frgrncvvdeq.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 7 | frgrncvvdeq.ne | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 8 | frgrncvvdeq.xy | . . 3 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
| 9 | frgrncvvdeq.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
| 10 | frgrncvvdeq.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem8 30253 | . 2 ⊢ (𝜑 → 𝐴:𝐷–1-1→𝑁) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem9 30254 | . 2 ⊢ (𝜑 → 𝐴:𝐷–onto→𝑁) |
| 13 | df-f1o 6548 | . 2 ⊢ (𝐴:𝐷–1-1-onto→𝑁 ↔ (𝐴:𝐷–1-1→𝑁 ∧ 𝐴:𝐷–onto→𝑁)) | |
| 14 | 11, 12, 13 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐴:𝐷–1-1-onto→𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∉ wnel 3035 {cpr 4608 ↦ cmpt 5205 –1-1→wf1 6538 –onto→wfo 6539 –1-1-onto→wf1o 6540 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 Vtxcvtx 28941 Edgcedg 28992 NeighbVtx cnbgr 29277 FriendGraph cfrgr 30205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13530 df-hash 14352 df-edg 28993 df-upgr 29027 df-umgr 29028 df-usgr 29096 df-nbgr 29278 df-frgr 30206 |
| This theorem is referenced by: frgrncvvdeq 30256 |
| Copyright terms: Public domain | W3C validator |