Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem10 | Structured version Visualization version GIF version |
Description: Lemma 10 for frgrncvvdeq 28652. (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem10 | ⊢ (𝜑 → 𝐴:𝐷–1-1-onto→𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrncvvdeq.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrncvvdeq.nx | . . 3 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | frgrncvvdeq.ny | . . 3 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
5 | frgrncvvdeq.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | frgrncvvdeq.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
7 | frgrncvvdeq.ne | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
8 | frgrncvvdeq.xy | . . 3 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
9 | frgrncvvdeq.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
10 | frgrncvvdeq.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem8 28649 | . 2 ⊢ (𝜑 → 𝐴:𝐷–1-1→𝑁) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem9 28650 | . 2 ⊢ (𝜑 → 𝐴:𝐷–onto→𝑁) |
13 | df-f1o 6437 | . 2 ⊢ (𝐴:𝐷–1-1-onto→𝑁 ↔ (𝐴:𝐷–1-1→𝑁 ∧ 𝐴:𝐷–onto→𝑁)) | |
14 | 11, 12, 13 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐴:𝐷–1-1-onto→𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∉ wnel 3050 {cpr 4568 ↦ cmpt 5161 –1-1→wf1 6427 –onto→wfo 6428 –1-1-onto→wf1o 6429 ‘cfv 6430 ℩crio 7224 (class class class)co 7268 Vtxcvtx 27347 Edgcedg 27398 NeighbVtx cnbgr 27680 FriendGraph cfrgr 28601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-oadd 8285 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-fz 13222 df-hash 14026 df-edg 27399 df-upgr 27433 df-umgr 27434 df-usgr 27502 df-nbgr 27681 df-frgr 28602 |
This theorem is referenced by: frgrncvvdeq 28652 |
Copyright terms: Public domain | W3C validator |