Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1deg2 Structured version   Visualization version   GIF version

Theorem evl1deg2 33525
Description: Evaluation of a univariate polynomial of degree 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
evl1deg1.1 𝑃 = (Poly1𝑅)
evl1deg1.2 𝑂 = (eval1𝑅)
evl1deg1.3 𝐾 = (Base‘𝑅)
evl1deg1.4 𝑈 = (Base‘𝑃)
evl1deg1.5 · = (.r𝑅)
evl1deg1.6 + = (+g𝑅)
evl1deg2.p = (.g‘(mulGrp‘𝑅))
evl1deg2.f 𝐹 = (coe1𝑀)
evl1deg2.e 𝐸 = (deg1𝑅)
evl1deg2.a 𝐴 = (𝐹‘2)
evl1deg2.b 𝐵 = (𝐹‘1)
evl1deg2.c 𝐶 = (𝐹‘0)
evl1deg2.r (𝜑𝑅 ∈ CRing)
evl1deg2.m (𝜑𝑀𝑈)
evl1deg2.1 (𝜑 → (𝐸𝑀) = 2)
evl1deg2.x (𝜑𝑋𝐾)
Assertion
Ref Expression
evl1deg2 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))

Proof of Theorem evl1deg2
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . . 6 (𝑥 = 𝑋 → (𝑘 𝑥) = (𝑘 𝑋))
21oveq2d 7369 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑘) · (𝑘 𝑥)) = ((𝐹𝑘) · (𝑘 𝑋)))
32mpteq2dv 5189 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))))
43oveq2d 7369 . . 3 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
5 evl1deg1.2 . . . 4 𝑂 = (eval1𝑅)
6 evl1deg1.1 . . . 4 𝑃 = (Poly1𝑅)
7 evl1deg1.3 . . . 4 𝐾 = (Base‘𝑅)
8 evl1deg1.4 . . . 4 𝑈 = (Base‘𝑃)
9 evl1deg2.r . . . 4 (𝜑𝑅 ∈ CRing)
10 evl1deg2.m . . . 4 (𝜑𝑀𝑈)
11 evl1deg1.5 . . . 4 · = (.r𝑅)
12 evl1deg2.p . . . 4 = (.g‘(mulGrp‘𝑅))
13 evl1deg2.f . . . 4 𝐹 = (coe1𝑀)
145, 6, 7, 8, 9, 10, 11, 12, 13evl1fpws 33512 . . 3 (𝜑 → (𝑂𝑀) = (𝑥𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))))))
15 evl1deg2.x . . 3 (𝜑𝑋𝐾)
16 ovexd 7388 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ V)
174, 14, 15, 16fvmptd4 6958 . 2 (𝜑 → ((𝑂𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
18 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
19 evl1deg1.6 . . 3 + = (+g𝑅)
209crngringd 20149 . . . 4 (𝜑𝑅 ∈ Ring)
2120ringcmnd 20187 . . 3 (𝜑𝑅 ∈ CMnd)
22 nn0ex 12408 . . . 4 0 ∈ V
2322a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
2420adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
2513, 8, 6, 7coe1fvalcl 22113 . . . . 5 ((𝑀𝑈𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
2610, 25sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
27 eqid 2729 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 7mgpbas 20048 . . . . 5 𝐾 = (Base‘(mulGrp‘𝑅))
2927ringmgp 20142 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3020, 29syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
3130adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑅) ∈ Mnd)
32 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3315adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑋𝐾)
3428, 12, 31, 32, 33mulgnn0cld 18992 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐾)
357, 11, 24, 26, 34ringcld 20163 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
36 fvexd 6841 . . . 4 (𝜑 → (0g𝑅) ∈ V)
37 fveq2 6826 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
38 oveq1 7360 . . . . 5 (𝑘 = 𝑗 → (𝑘 𝑋) = (𝑗 𝑋))
3937, 38oveq12d 7371 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹𝑗) · (𝑗 𝑋)))
40 breq1 5098 . . . . . . 7 (𝑖 = (𝐸𝑀) → (𝑖 < 𝑗 ↔ (𝐸𝑀) < 𝑗))
4140imbi1d 341 . . . . . 6 (𝑖 = (𝐸𝑀) → ((𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
4241ralbidv 3152 . . . . 5 (𝑖 = (𝐸𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
43 evl1deg2.1 . . . . . 6 (𝜑 → (𝐸𝑀) = 2)
44 2nn0 12419 . . . . . . 7 2 ∈ ℕ0
4544a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ0)
4643, 45eqeltrd 2828 . . . . 5 (𝜑 → (𝐸𝑀) ∈ ℕ0)
4710ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑀𝑈)
48 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑗 ∈ ℕ0)
49 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐸𝑀) < 𝑗)
50 evl1deg2.e . . . . . . . . . . 11 𝐸 = (deg1𝑅)
5150, 6, 8, 18, 13deg1lt 26018 . . . . . . . . . 10 ((𝑀𝑈𝑗 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5247, 48, 49, 51syl3anc 1373 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5352oveq1d 7368 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = ((0g𝑅) · (𝑗 𝑋)))
5420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑅 ∈ Ring)
5554, 29syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd)
5615ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑋𝐾)
5728, 12, 55, 48, 56mulgnn0cld 18992 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝑗 𝑋) ∈ 𝐾)
587, 11, 18, 54, 57ringlzd 20198 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((0g𝑅) · (𝑗 𝑋)) = (0g𝑅))
5953, 58eqtrd 2764 . . . . . . 7 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))
6059ex 412 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6160ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6242, 46, 61rspcedvdw 3582 . . . 4 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6336, 35, 39, 62mptnn0fsuppd 13923 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
64 fzouzdisj 13616 . . . 4 ((0..^3) ∩ (ℤ‘3)) = ∅
6564a1i 11 . . 3 (𝜑 → ((0..^3) ∩ (ℤ‘3)) = ∅)
66 nn0uz 12795 . . . . 5 0 = (ℤ‘0)
67 3nn0 12420 . . . . . . 7 3 ∈ ℕ0
6867, 66eleqtri 2826 . . . . . 6 3 ∈ (ℤ‘0)
69 fzouzsplit 13615 . . . . . 6 (3 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^3) ∪ (ℤ‘3)))
7068, 69ax-mp 5 . . . . 5 (ℤ‘0) = ((0..^3) ∪ (ℤ‘3))
7166, 70eqtri 2752 . . . 4 0 = ((0..^3) ∪ (ℤ‘3))
7271a1i 11 . . 3 (𝜑 → ℕ0 = ((0..^3) ∪ (ℤ‘3)))
737, 18, 19, 21, 23, 35, 63, 65, 72gsumsplit2 19826 . 2 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
74 fzo0to3tp 13673 . . . . . . 7 (0..^3) = {0, 1, 2}
7574a1i 11 . . . . . 6 (𝜑 → (0..^3) = {0, 1, 2})
7675mpteq1d 5185 . . . . 5 (𝜑 → (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))))
7776oveq2d 7369 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
7810adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑀𝑈)
79 uzss 12776 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘0) → (ℤ‘3) ⊆ (ℤ‘0))
8068, 79ax-mp 5 . . . . . . . . . . . . 13 (ℤ‘3) ⊆ (ℤ‘0)
8180, 66sseqtrri 3987 . . . . . . . . . . . 12 (ℤ‘3) ⊆ ℕ0
8281a1i 11 . . . . . . . . . . 11 (𝜑 → (ℤ‘3) ⊆ ℕ0)
8382sselda 3937 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑘 ∈ ℕ0)
8443adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐸𝑀) = 2)
85 2p1e3 12283 . . . . . . . . . . . . . . 15 (2 + 1) = 3
8685fveq2i 6829 . . . . . . . . . . . . . 14 (ℤ‘(2 + 1)) = (ℤ‘3)
8786eleq2i 2820 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘(2 + 1)) ↔ 𝑘 ∈ (ℤ‘3))
88 2z 12525 . . . . . . . . . . . . . 14 2 ∈ ℤ
89 eluzp1l 12780 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(2 + 1))) → 2 < 𝑘)
9088, 89mpan 690 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘(2 + 1)) → 2 < 𝑘)
9187, 90sylbir 235 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘3) → 2 < 𝑘)
9291adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘3)) → 2 < 𝑘)
9384, 92eqbrtrd 5117 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐸𝑀) < 𝑘)
9450, 6, 8, 18, 13deg1lt 26018 . . . . . . . . . 10 ((𝑀𝑈𝑘 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑘) → (𝐹𝑘) = (0g𝑅))
9578, 83, 93, 94syl3anc 1373 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐹𝑘) = (0g𝑅))
9695oveq1d 7368 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘3)) → ((𝐹𝑘) · (𝑘 𝑋)) = ((0g𝑅) · (𝑘 𝑋)))
9720adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑅 ∈ Ring)
9897, 29syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → (mulGrp‘𝑅) ∈ Mnd)
9915adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑋𝐾)
10028, 12, 98, 83, 99mulgnn0cld 18992 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝑘 𝑋) ∈ 𝐾)
1017, 11, 18, 97, 100ringlzd 20198 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘3)) → ((0g𝑅) · (𝑘 𝑋)) = (0g𝑅))
10296, 101eqtrd 2764 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘3)) → ((𝐹𝑘) · (𝑘 𝑋)) = (0g𝑅))
103102mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅)))
104103oveq2d 7369 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))))
1059crnggrpd 20150 . . . . . . 7 (𝜑𝑅 ∈ Grp)
106105grpmndd 18843 . . . . . 6 (𝜑𝑅 ∈ Mnd)
107 fvexd 6841 . . . . . 6 (𝜑 → (ℤ‘3) ∈ V)
10818gsumz 18728 . . . . . 6 ((𝑅 ∈ Mnd ∧ (ℤ‘3) ∈ V) → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))) = (0g𝑅))
109106, 107, 108syl2anc 584 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))) = (0g𝑅))
110104, 109eqtrd 2764 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (0g𝑅))
11177, 110oveq12d 7371 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = ((𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (0g𝑅)))
112 tpex 7686 . . . . . 6 {0, 1, 2} ∈ V
113112a1i 11 . . . . 5 (𝜑 → {0, 1, 2} ∈ V)
11420adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝑅 ∈ Ring)
11513, 8, 6, 7coe1f 22112 . . . . . . . . . 10 (𝑀𝑈𝐹:ℕ0𝐾)
11610, 115syl 17 . . . . . . . . 9 (𝜑𝐹:ℕ0𝐾)
117116adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝐹:ℕ0𝐾)
118 fzo0ssnn0 13667 . . . . . . . . . 10 (0..^3) ⊆ ℕ0
11975, 118eqsstrrdi 3983 . . . . . . . . 9 (𝜑 → {0, 1, 2} ⊆ ℕ0)
120119sselda 3937 . . . . . . . 8 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝑘 ∈ ℕ0)
121117, 120ffvelcdmd 7023 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → (𝐹𝑘) ∈ 𝐾)
122120, 34syldan 591 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → (𝑘 𝑋) ∈ 𝐾)
1237, 11, 114, 121, 122ringcld 20163 . . . . . 6 ((𝜑𝑘 ∈ {0, 1, 2}) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
124123fmpttd 7053 . . . . 5 (𝜑 → (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))):{0, 1, 2}⟶𝐾)
125 fzofi 13899 . . . . . . 7 (0..^3) ∈ Fin
12675, 125eqeltrrdi 2837 . . . . . 6 (𝜑 → {0, 1, 2} ∈ Fin)
127124, 126, 36fidmfisupp 9281 . . . . 5 (𝜑 → (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
1287, 18, 21, 113, 124, 127gsumcl 19812 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ 𝐾)
1297, 19, 18, 105, 128grpridd 18867 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
130 fveq2 6826 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
131 evl1deg2.c . . . . . . 7 𝐶 = (𝐹‘0)
132130, 131eqtr4di 2782 . . . . . 6 (𝑘 = 0 → (𝐹𝑘) = 𝐶)
133 oveq1 7360 . . . . . 6 (𝑘 = 0 → (𝑘 𝑋) = (0 𝑋))
134132, 133oveq12d 7371 . . . . 5 (𝑘 = 0 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐶 · (0 𝑋)))
135 fveq2 6826 . . . . . . 7 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
136 evl1deg2.b . . . . . . 7 𝐵 = (𝐹‘1)
137135, 136eqtr4di 2782 . . . . . 6 (𝑘 = 1 → (𝐹𝑘) = 𝐵)
138 oveq1 7360 . . . . . 6 (𝑘 = 1 → (𝑘 𝑋) = (1 𝑋))
139137, 138oveq12d 7371 . . . . 5 (𝑘 = 1 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐵 · (1 𝑋)))
140 fveq2 6826 . . . . . . 7 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
141 evl1deg2.a . . . . . . 7 𝐴 = (𝐹‘2)
142140, 141eqtr4di 2782 . . . . . 6 (𝑘 = 2 → (𝐹𝑘) = 𝐴)
143 oveq1 7360 . . . . . 6 (𝑘 = 2 → (𝑘 𝑋) = (2 𝑋))
144142, 143oveq12d 7371 . . . . 5 (𝑘 = 2 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐴 · (2 𝑋)))
145 0nn0 12417 . . . . . 6 0 ∈ ℕ0
146145a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
147 1nn0 12418 . . . . . 6 1 ∈ ℕ0
148147a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
149 0ne1 12217 . . . . . 6 0 ≠ 1
150149a1i 11 . . . . 5 (𝜑 → 0 ≠ 1)
151 1ne2 12349 . . . . . 6 1 ≠ 2
152151a1i 11 . . . . 5 (𝜑 → 1 ≠ 2)
153 0ne2 12348 . . . . . 6 0 ≠ 2
154153a1i 11 . . . . 5 (𝜑 → 0 ≠ 2)
15513, 8, 6, 7coe1fvalcl 22113 . . . . . . . 8 ((𝑀𝑈 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ 𝐾)
15610, 145, 155sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ 𝐾)
157131, 156eqeltrid 2832 . . . . . 6 (𝜑𝐶𝐾)
15828, 12, 30, 146, 15mulgnn0cld 18992 . . . . . 6 (𝜑 → (0 𝑋) ∈ 𝐾)
1597, 11, 20, 157, 158ringcld 20163 . . . . 5 (𝜑 → (𝐶 · (0 𝑋)) ∈ 𝐾)
16013, 8, 6, 7coe1fvalcl 22113 . . . . . . . 8 ((𝑀𝑈 ∧ 1 ∈ ℕ0) → (𝐹‘1) ∈ 𝐾)
16110, 147, 160sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ 𝐾)
162136, 161eqeltrid 2832 . . . . . 6 (𝜑𝐵𝐾)
16328, 12, 30, 148, 15mulgnn0cld 18992 . . . . . 6 (𝜑 → (1 𝑋) ∈ 𝐾)
1647, 11, 20, 162, 163ringcld 20163 . . . . 5 (𝜑 → (𝐵 · (1 𝑋)) ∈ 𝐾)
16513, 8, 6, 7coe1fvalcl 22113 . . . . . . . 8 ((𝑀𝑈 ∧ 2 ∈ ℕ0) → (𝐹‘2) ∈ 𝐾)
16610, 44, 165sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘2) ∈ 𝐾)
167141, 166eqeltrid 2832 . . . . . 6 (𝜑𝐴𝐾)
16828, 12, 30, 45, 15mulgnn0cld 18992 . . . . . 6 (𝜑 → (2 𝑋) ∈ 𝐾)
1697, 11, 20, 167, 168ringcld 20163 . . . . 5 (𝜑 → (𝐴 · (2 𝑋)) ∈ 𝐾)
1707, 19, 134, 139, 144, 21, 146, 148, 45, 150, 152, 154, 159, 164, 169gsumtp 33024 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))))
1717, 19, 105, 159, 164grpcld 18844 . . . . 5 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) ∈ 𝐾)
1727, 19cmncom 19695 . . . . 5 ((𝑅 ∈ CMnd ∧ ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) ∈ 𝐾 ∧ (𝐴 · (2 𝑋)) ∈ 𝐾) → (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))) = ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))))
17321, 171, 169, 172syl3anc 1373 . . . 4 (𝜑 → (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))) = ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))))
1747, 19cmncom 19695 . . . . . . 7 ((𝑅 ∈ CMnd ∧ (𝐶 · (0 𝑋)) ∈ 𝐾 ∧ (𝐵 · (1 𝑋)) ∈ 𝐾) → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))))
17521, 159, 164, 174syl3anc 1373 . . . . . 6 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))))
17628, 12mulg1 18978 . . . . . . . . 9 (𝑋𝐾 → (1 𝑋) = 𝑋)
17715, 176syl 17 . . . . . . . 8 (𝜑 → (1 𝑋) = 𝑋)
178177oveq2d 7369 . . . . . . 7 (𝜑 → (𝐵 · (1 𝑋)) = (𝐵 · 𝑋))
179 eqid 2729 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
18027, 179ringidval 20086 . . . . . . . . . . 11 (1r𝑅) = (0g‘(mulGrp‘𝑅))
18128, 180, 12mulg0 18971 . . . . . . . . . 10 (𝑋𝐾 → (0 𝑋) = (1r𝑅))
18215, 181syl 17 . . . . . . . . 9 (𝜑 → (0 𝑋) = (1r𝑅))
183182oveq2d 7369 . . . . . . . 8 (𝜑 → (𝐶 · (0 𝑋)) = (𝐶 · (1r𝑅)))
1847, 11, 179, 20, 157ringridmd 20176 . . . . . . . 8 (𝜑 → (𝐶 · (1r𝑅)) = 𝐶)
185183, 184eqtrd 2764 . . . . . . 7 (𝜑 → (𝐶 · (0 𝑋)) = 𝐶)
186178, 185oveq12d 7371 . . . . . 6 (𝜑 → ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))) = ((𝐵 · 𝑋) + 𝐶))
187175, 186eqtrd 2764 . . . . 5 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · 𝑋) + 𝐶))
188187oveq2d 7369 . . . 4 (𝜑 → ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
189170, 173, 1883eqtrd 2768 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
190111, 129, 1893eqtrd 2768 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
19117, 73, 1903eqtrd 2768 1 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  cun 3903  cin 3904  wss 3905  c0 4286  {ctp 4583   class class class wbr 5095  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  2c2 12201  3c3 12202  0cn0 12402  cz 12489  cuz 12753  ..^cfzo 13575  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  .gcmg 18964  CMndccmn 19677  mulGrpcmgp 20043  1rcur 20084  Ringcrg 20136  CRingccrg 20137  Poly1cpl1 22077  coe1cco1 22078  eval1ce1 22217  deg1cdg1 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-srg 20090  df-ring 20138  df-cring 20139  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-cnfld 21280  df-assa 21778  df-asp 21779  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-evls 21997  df-evl 21998  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-evls1 22218  df-evl1 22219  df-mdeg 25976  df-deg1 25977
This theorem is referenced by:  rtelextdg2lem  33695
  Copyright terms: Public domain W3C validator