Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1deg2 Structured version   Visualization version   GIF version

Theorem evl1deg2 33519
Description: Evaluation of a univariate polynomial of degree 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
evl1deg1.1 𝑃 = (Poly1𝑅)
evl1deg1.2 𝑂 = (eval1𝑅)
evl1deg1.3 𝐾 = (Base‘𝑅)
evl1deg1.4 𝑈 = (Base‘𝑃)
evl1deg1.5 · = (.r𝑅)
evl1deg1.6 + = (+g𝑅)
evl1deg2.p = (.g‘(mulGrp‘𝑅))
evl1deg2.f 𝐹 = (coe1𝑀)
evl1deg2.e 𝐸 = (deg1𝑅)
evl1deg2.a 𝐴 = (𝐹‘2)
evl1deg2.b 𝐵 = (𝐹‘1)
evl1deg2.c 𝐶 = (𝐹‘0)
evl1deg2.r (𝜑𝑅 ∈ CRing)
evl1deg2.m (𝜑𝑀𝑈)
evl1deg2.1 (𝜑 → (𝐸𝑀) = 2)
evl1deg2.x (𝜑𝑋𝐾)
Assertion
Ref Expression
evl1deg2 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))

Proof of Theorem evl1deg2
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . . 6 (𝑥 = 𝑋 → (𝑘 𝑥) = (𝑘 𝑋))
21oveq2d 7385 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑘) · (𝑘 𝑥)) = ((𝐹𝑘) · (𝑘 𝑋)))
32mpteq2dv 5196 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))))
43oveq2d 7385 . . 3 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
5 evl1deg1.2 . . . 4 𝑂 = (eval1𝑅)
6 evl1deg1.1 . . . 4 𝑃 = (Poly1𝑅)
7 evl1deg1.3 . . . 4 𝐾 = (Base‘𝑅)
8 evl1deg1.4 . . . 4 𝑈 = (Base‘𝑃)
9 evl1deg2.r . . . 4 (𝜑𝑅 ∈ CRing)
10 evl1deg2.m . . . 4 (𝜑𝑀𝑈)
11 evl1deg1.5 . . . 4 · = (.r𝑅)
12 evl1deg2.p . . . 4 = (.g‘(mulGrp‘𝑅))
13 evl1deg2.f . . . 4 𝐹 = (coe1𝑀)
145, 6, 7, 8, 9, 10, 11, 12, 13evl1fpws 33506 . . 3 (𝜑 → (𝑂𝑀) = (𝑥𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))))))
15 evl1deg2.x . . 3 (𝜑𝑋𝐾)
16 ovexd 7404 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ V)
174, 14, 15, 16fvmptd4 6974 . 2 (𝜑 → ((𝑂𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
18 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
19 evl1deg1.6 . . 3 + = (+g𝑅)
209crngringd 20131 . . . 4 (𝜑𝑅 ∈ Ring)
2120ringcmnd 20169 . . 3 (𝜑𝑅 ∈ CMnd)
22 nn0ex 12424 . . . 4 0 ∈ V
2322a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
2420adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
2513, 8, 6, 7coe1fvalcl 22073 . . . . 5 ((𝑀𝑈𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
2610, 25sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
27 eqid 2729 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 7mgpbas 20030 . . . . 5 𝐾 = (Base‘(mulGrp‘𝑅))
2927ringmgp 20124 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3020, 29syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
3130adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑅) ∈ Mnd)
32 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3315adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑋𝐾)
3428, 12, 31, 32, 33mulgnn0cld 19003 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐾)
357, 11, 24, 26, 34ringcld 20145 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
36 fvexd 6855 . . . 4 (𝜑 → (0g𝑅) ∈ V)
37 fveq2 6840 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
38 oveq1 7376 . . . . 5 (𝑘 = 𝑗 → (𝑘 𝑋) = (𝑗 𝑋))
3937, 38oveq12d 7387 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹𝑗) · (𝑗 𝑋)))
40 breq1 5105 . . . . . . 7 (𝑖 = (𝐸𝑀) → (𝑖 < 𝑗 ↔ (𝐸𝑀) < 𝑗))
4140imbi1d 341 . . . . . 6 (𝑖 = (𝐸𝑀) → ((𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
4241ralbidv 3156 . . . . 5 (𝑖 = (𝐸𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
43 evl1deg2.1 . . . . . 6 (𝜑 → (𝐸𝑀) = 2)
44 2nn0 12435 . . . . . . 7 2 ∈ ℕ0
4544a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ0)
4643, 45eqeltrd 2828 . . . . 5 (𝜑 → (𝐸𝑀) ∈ ℕ0)
4710ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑀𝑈)
48 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑗 ∈ ℕ0)
49 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐸𝑀) < 𝑗)
50 evl1deg2.e . . . . . . . . . . 11 𝐸 = (deg1𝑅)
5150, 6, 8, 18, 13deg1lt 25978 . . . . . . . . . 10 ((𝑀𝑈𝑗 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5247, 48, 49, 51syl3anc 1373 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5352oveq1d 7384 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = ((0g𝑅) · (𝑗 𝑋)))
5420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑅 ∈ Ring)
5554, 29syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd)
5615ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑋𝐾)
5728, 12, 55, 48, 56mulgnn0cld 19003 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝑗 𝑋) ∈ 𝐾)
587, 11, 18, 54, 57ringlzd 20180 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((0g𝑅) · (𝑗 𝑋)) = (0g𝑅))
5953, 58eqtrd 2764 . . . . . . 7 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))
6059ex 412 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6160ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6242, 46, 61rspcedvdw 3588 . . . 4 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6336, 35, 39, 62mptnn0fsuppd 13939 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
64 fzouzdisj 13632 . . . 4 ((0..^3) ∩ (ℤ‘3)) = ∅
6564a1i 11 . . 3 (𝜑 → ((0..^3) ∩ (ℤ‘3)) = ∅)
66 nn0uz 12811 . . . . 5 0 = (ℤ‘0)
67 3nn0 12436 . . . . . . 7 3 ∈ ℕ0
6867, 66eleqtri 2826 . . . . . 6 3 ∈ (ℤ‘0)
69 fzouzsplit 13631 . . . . . 6 (3 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^3) ∪ (ℤ‘3)))
7068, 69ax-mp 5 . . . . 5 (ℤ‘0) = ((0..^3) ∪ (ℤ‘3))
7166, 70eqtri 2752 . . . 4 0 = ((0..^3) ∪ (ℤ‘3))
7271a1i 11 . . 3 (𝜑 → ℕ0 = ((0..^3) ∪ (ℤ‘3)))
737, 18, 19, 21, 23, 35, 63, 65, 72gsumsplit2 19835 . 2 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
74 fzo0to3tp 13689 . . . . . . 7 (0..^3) = {0, 1, 2}
7574a1i 11 . . . . . 6 (𝜑 → (0..^3) = {0, 1, 2})
7675mpteq1d 5192 . . . . 5 (𝜑 → (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))))
7776oveq2d 7385 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
7810adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑀𝑈)
79 uzss 12792 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘0) → (ℤ‘3) ⊆ (ℤ‘0))
8068, 79ax-mp 5 . . . . . . . . . . . . 13 (ℤ‘3) ⊆ (ℤ‘0)
8180, 66sseqtrri 3993 . . . . . . . . . . . 12 (ℤ‘3) ⊆ ℕ0
8281a1i 11 . . . . . . . . . . 11 (𝜑 → (ℤ‘3) ⊆ ℕ0)
8382sselda 3943 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑘 ∈ ℕ0)
8443adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐸𝑀) = 2)
85 2p1e3 12299 . . . . . . . . . . . . . . 15 (2 + 1) = 3
8685fveq2i 6843 . . . . . . . . . . . . . 14 (ℤ‘(2 + 1)) = (ℤ‘3)
8786eleq2i 2820 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘(2 + 1)) ↔ 𝑘 ∈ (ℤ‘3))
88 2z 12541 . . . . . . . . . . . . . 14 2 ∈ ℤ
89 eluzp1l 12796 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(2 + 1))) → 2 < 𝑘)
9088, 89mpan 690 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘(2 + 1)) → 2 < 𝑘)
9187, 90sylbir 235 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘3) → 2 < 𝑘)
9291adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘3)) → 2 < 𝑘)
9384, 92eqbrtrd 5124 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐸𝑀) < 𝑘)
9450, 6, 8, 18, 13deg1lt 25978 . . . . . . . . . 10 ((𝑀𝑈𝑘 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑘) → (𝐹𝑘) = (0g𝑅))
9578, 83, 93, 94syl3anc 1373 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐹𝑘) = (0g𝑅))
9695oveq1d 7384 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘3)) → ((𝐹𝑘) · (𝑘 𝑋)) = ((0g𝑅) · (𝑘 𝑋)))
9720adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑅 ∈ Ring)
9897, 29syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → (mulGrp‘𝑅) ∈ Mnd)
9915adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑋𝐾)
10028, 12, 98, 83, 99mulgnn0cld 19003 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝑘 𝑋) ∈ 𝐾)
1017, 11, 18, 97, 100ringlzd 20180 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘3)) → ((0g𝑅) · (𝑘 𝑋)) = (0g𝑅))
10296, 101eqtrd 2764 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘3)) → ((𝐹𝑘) · (𝑘 𝑋)) = (0g𝑅))
103102mpteq2dva 5195 . . . . . 6 (𝜑 → (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅)))
104103oveq2d 7385 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))))
1059crnggrpd 20132 . . . . . . 7 (𝜑𝑅 ∈ Grp)
106105grpmndd 18854 . . . . . 6 (𝜑𝑅 ∈ Mnd)
107 fvexd 6855 . . . . . 6 (𝜑 → (ℤ‘3) ∈ V)
10818gsumz 18739 . . . . . 6 ((𝑅 ∈ Mnd ∧ (ℤ‘3) ∈ V) → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))) = (0g𝑅))
109106, 107, 108syl2anc 584 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))) = (0g𝑅))
110104, 109eqtrd 2764 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (0g𝑅))
11177, 110oveq12d 7387 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = ((𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (0g𝑅)))
112 tpex 7702 . . . . . 6 {0, 1, 2} ∈ V
113112a1i 11 . . . . 5 (𝜑 → {0, 1, 2} ∈ V)
11420adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝑅 ∈ Ring)
11513, 8, 6, 7coe1f 22072 . . . . . . . . . 10 (𝑀𝑈𝐹:ℕ0𝐾)
11610, 115syl 17 . . . . . . . . 9 (𝜑𝐹:ℕ0𝐾)
117116adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝐹:ℕ0𝐾)
118 fzo0ssnn0 13683 . . . . . . . . . 10 (0..^3) ⊆ ℕ0
11975, 118eqsstrrdi 3989 . . . . . . . . 9 (𝜑 → {0, 1, 2} ⊆ ℕ0)
120119sselda 3943 . . . . . . . 8 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝑘 ∈ ℕ0)
121117, 120ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → (𝐹𝑘) ∈ 𝐾)
122120, 34syldan 591 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → (𝑘 𝑋) ∈ 𝐾)
1237, 11, 114, 121, 122ringcld 20145 . . . . . 6 ((𝜑𝑘 ∈ {0, 1, 2}) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
124123fmpttd 7069 . . . . 5 (𝜑 → (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))):{0, 1, 2}⟶𝐾)
125 fzofi 13915 . . . . . . 7 (0..^3) ∈ Fin
12675, 125eqeltrrdi 2837 . . . . . 6 (𝜑 → {0, 1, 2} ∈ Fin)
127124, 126, 36fidmfisupp 9299 . . . . 5 (𝜑 → (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
1287, 18, 21, 113, 124, 127gsumcl 19821 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ 𝐾)
1297, 19, 18, 105, 128grpridd 18878 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
130 fveq2 6840 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
131 evl1deg2.c . . . . . . 7 𝐶 = (𝐹‘0)
132130, 131eqtr4di 2782 . . . . . 6 (𝑘 = 0 → (𝐹𝑘) = 𝐶)
133 oveq1 7376 . . . . . 6 (𝑘 = 0 → (𝑘 𝑋) = (0 𝑋))
134132, 133oveq12d 7387 . . . . 5 (𝑘 = 0 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐶 · (0 𝑋)))
135 fveq2 6840 . . . . . . 7 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
136 evl1deg2.b . . . . . . 7 𝐵 = (𝐹‘1)
137135, 136eqtr4di 2782 . . . . . 6 (𝑘 = 1 → (𝐹𝑘) = 𝐵)
138 oveq1 7376 . . . . . 6 (𝑘 = 1 → (𝑘 𝑋) = (1 𝑋))
139137, 138oveq12d 7387 . . . . 5 (𝑘 = 1 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐵 · (1 𝑋)))
140 fveq2 6840 . . . . . . 7 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
141 evl1deg2.a . . . . . . 7 𝐴 = (𝐹‘2)
142140, 141eqtr4di 2782 . . . . . 6 (𝑘 = 2 → (𝐹𝑘) = 𝐴)
143 oveq1 7376 . . . . . 6 (𝑘 = 2 → (𝑘 𝑋) = (2 𝑋))
144142, 143oveq12d 7387 . . . . 5 (𝑘 = 2 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐴 · (2 𝑋)))
145 0nn0 12433 . . . . . 6 0 ∈ ℕ0
146145a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
147 1nn0 12434 . . . . . 6 1 ∈ ℕ0
148147a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
149 0ne1 12233 . . . . . 6 0 ≠ 1
150149a1i 11 . . . . 5 (𝜑 → 0 ≠ 1)
151 1ne2 12365 . . . . . 6 1 ≠ 2
152151a1i 11 . . . . 5 (𝜑 → 1 ≠ 2)
153 0ne2 12364 . . . . . 6 0 ≠ 2
154153a1i 11 . . . . 5 (𝜑 → 0 ≠ 2)
15513, 8, 6, 7coe1fvalcl 22073 . . . . . . . 8 ((𝑀𝑈 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ 𝐾)
15610, 145, 155sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ 𝐾)
157131, 156eqeltrid 2832 . . . . . 6 (𝜑𝐶𝐾)
15828, 12, 30, 146, 15mulgnn0cld 19003 . . . . . 6 (𝜑 → (0 𝑋) ∈ 𝐾)
1597, 11, 20, 157, 158ringcld 20145 . . . . 5 (𝜑 → (𝐶 · (0 𝑋)) ∈ 𝐾)
16013, 8, 6, 7coe1fvalcl 22073 . . . . . . . 8 ((𝑀𝑈 ∧ 1 ∈ ℕ0) → (𝐹‘1) ∈ 𝐾)
16110, 147, 160sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ 𝐾)
162136, 161eqeltrid 2832 . . . . . 6 (𝜑𝐵𝐾)
16328, 12, 30, 148, 15mulgnn0cld 19003 . . . . . 6 (𝜑 → (1 𝑋) ∈ 𝐾)
1647, 11, 20, 162, 163ringcld 20145 . . . . 5 (𝜑 → (𝐵 · (1 𝑋)) ∈ 𝐾)
16513, 8, 6, 7coe1fvalcl 22073 . . . . . . . 8 ((𝑀𝑈 ∧ 2 ∈ ℕ0) → (𝐹‘2) ∈ 𝐾)
16610, 44, 165sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘2) ∈ 𝐾)
167141, 166eqeltrid 2832 . . . . . 6 (𝜑𝐴𝐾)
16828, 12, 30, 45, 15mulgnn0cld 19003 . . . . . 6 (𝜑 → (2 𝑋) ∈ 𝐾)
1697, 11, 20, 167, 168ringcld 20145 . . . . 5 (𝜑 → (𝐴 · (2 𝑋)) ∈ 𝐾)
1707, 19, 134, 139, 144, 21, 146, 148, 45, 150, 152, 154, 159, 164, 169gsumtp 32971 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))))
1717, 19, 105, 159, 164grpcld 18855 . . . . 5 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) ∈ 𝐾)
1727, 19cmncom 19704 . . . . 5 ((𝑅 ∈ CMnd ∧ ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) ∈ 𝐾 ∧ (𝐴 · (2 𝑋)) ∈ 𝐾) → (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))) = ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))))
17321, 171, 169, 172syl3anc 1373 . . . 4 (𝜑 → (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))) = ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))))
1747, 19cmncom 19704 . . . . . . 7 ((𝑅 ∈ CMnd ∧ (𝐶 · (0 𝑋)) ∈ 𝐾 ∧ (𝐵 · (1 𝑋)) ∈ 𝐾) → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))))
17521, 159, 164, 174syl3anc 1373 . . . . . 6 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))))
17628, 12mulg1 18989 . . . . . . . . 9 (𝑋𝐾 → (1 𝑋) = 𝑋)
17715, 176syl 17 . . . . . . . 8 (𝜑 → (1 𝑋) = 𝑋)
178177oveq2d 7385 . . . . . . 7 (𝜑 → (𝐵 · (1 𝑋)) = (𝐵 · 𝑋))
179 eqid 2729 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
18027, 179ringidval 20068 . . . . . . . . . . 11 (1r𝑅) = (0g‘(mulGrp‘𝑅))
18128, 180, 12mulg0 18982 . . . . . . . . . 10 (𝑋𝐾 → (0 𝑋) = (1r𝑅))
18215, 181syl 17 . . . . . . . . 9 (𝜑 → (0 𝑋) = (1r𝑅))
183182oveq2d 7385 . . . . . . . 8 (𝜑 → (𝐶 · (0 𝑋)) = (𝐶 · (1r𝑅)))
1847, 11, 179, 20, 157ringridmd 20158 . . . . . . . 8 (𝜑 → (𝐶 · (1r𝑅)) = 𝐶)
185183, 184eqtrd 2764 . . . . . . 7 (𝜑 → (𝐶 · (0 𝑋)) = 𝐶)
186178, 185oveq12d 7387 . . . . . 6 (𝜑 → ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))) = ((𝐵 · 𝑋) + 𝐶))
187175, 186eqtrd 2764 . . . . 5 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · 𝑋) + 𝐶))
188187oveq2d 7385 . . . 4 (𝜑 → ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
189170, 173, 1883eqtrd 2768 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
190111, 129, 1893eqtrd 2768 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
19117, 73, 1903eqtrd 2768 1 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cun 3909  cin 3910  wss 3911  c0 4292  {ctp 4589   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  2c2 12217  3c3 12218  0cn0 12418  cz 12505  cuz 12769  ..^cfzo 13591  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637  .gcmg 18975  CMndccmn 19686  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119  Poly1cpl1 22037  coe1cco1 22038  eval1ce1 22177  deg1cdg1 25935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-lsp 20854  df-cnfld 21241  df-assa 21738  df-asp 21739  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-evls 21957  df-evl 21958  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-evls1 22178  df-evl1 22179  df-mdeg 25936  df-deg1 25937
This theorem is referenced by:  rtelextdg2lem  33689
  Copyright terms: Public domain W3C validator