Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1deg2 Structured version   Visualization version   GIF version

Theorem evl1deg2 33546
Description: Evaluation of a univariate polynomial of degree 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
evl1deg1.1 𝑃 = (Poly1𝑅)
evl1deg1.2 𝑂 = (eval1𝑅)
evl1deg1.3 𝐾 = (Base‘𝑅)
evl1deg1.4 𝑈 = (Base‘𝑃)
evl1deg1.5 · = (.r𝑅)
evl1deg1.6 + = (+g𝑅)
evl1deg2.p = (.g‘(mulGrp‘𝑅))
evl1deg2.f 𝐹 = (coe1𝑀)
evl1deg2.e 𝐸 = (deg1𝑅)
evl1deg2.a 𝐴 = (𝐹‘2)
evl1deg2.b 𝐵 = (𝐹‘1)
evl1deg2.c 𝐶 = (𝐹‘0)
evl1deg2.r (𝜑𝑅 ∈ CRing)
evl1deg2.m (𝜑𝑀𝑈)
evl1deg2.1 (𝜑 → (𝐸𝑀) = 2)
evl1deg2.x (𝜑𝑋𝐾)
Assertion
Ref Expression
evl1deg2 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))

Proof of Theorem evl1deg2
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . 6 (𝑥 = 𝑋 → (𝑘 𝑥) = (𝑘 𝑋))
21oveq2d 7403 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑘) · (𝑘 𝑥)) = ((𝐹𝑘) · (𝑘 𝑋)))
32mpteq2dv 5201 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))))
43oveq2d 7403 . . 3 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
5 evl1deg1.2 . . . 4 𝑂 = (eval1𝑅)
6 evl1deg1.1 . . . 4 𝑃 = (Poly1𝑅)
7 evl1deg1.3 . . . 4 𝐾 = (Base‘𝑅)
8 evl1deg1.4 . . . 4 𝑈 = (Base‘𝑃)
9 evl1deg2.r . . . 4 (𝜑𝑅 ∈ CRing)
10 evl1deg2.m . . . 4 (𝜑𝑀𝑈)
11 evl1deg1.5 . . . 4 · = (.r𝑅)
12 evl1deg2.p . . . 4 = (.g‘(mulGrp‘𝑅))
13 evl1deg2.f . . . 4 𝐹 = (coe1𝑀)
145, 6, 7, 8, 9, 10, 11, 12, 13evl1fpws 33533 . . 3 (𝜑 → (𝑂𝑀) = (𝑥𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))))))
15 evl1deg2.x . . 3 (𝜑𝑋𝐾)
16 ovexd 7422 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ V)
174, 14, 15, 16fvmptd4 6992 . 2 (𝜑 → ((𝑂𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
18 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
19 evl1deg1.6 . . 3 + = (+g𝑅)
209crngringd 20155 . . . 4 (𝜑𝑅 ∈ Ring)
2120ringcmnd 20193 . . 3 (𝜑𝑅 ∈ CMnd)
22 nn0ex 12448 . . . 4 0 ∈ V
2322a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
2420adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
2513, 8, 6, 7coe1fvalcl 22097 . . . . 5 ((𝑀𝑈𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
2610, 25sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
27 eqid 2729 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 7mgpbas 20054 . . . . 5 𝐾 = (Base‘(mulGrp‘𝑅))
2927ringmgp 20148 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3020, 29syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
3130adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑅) ∈ Mnd)
32 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3315adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑋𝐾)
3428, 12, 31, 32, 33mulgnn0cld 19027 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐾)
357, 11, 24, 26, 34ringcld 20169 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
36 fvexd 6873 . . . 4 (𝜑 → (0g𝑅) ∈ V)
37 fveq2 6858 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
38 oveq1 7394 . . . . 5 (𝑘 = 𝑗 → (𝑘 𝑋) = (𝑗 𝑋))
3937, 38oveq12d 7405 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹𝑗) · (𝑗 𝑋)))
40 breq1 5110 . . . . . . 7 (𝑖 = (𝐸𝑀) → (𝑖 < 𝑗 ↔ (𝐸𝑀) < 𝑗))
4140imbi1d 341 . . . . . 6 (𝑖 = (𝐸𝑀) → ((𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
4241ralbidv 3156 . . . . 5 (𝑖 = (𝐸𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
43 evl1deg2.1 . . . . . 6 (𝜑 → (𝐸𝑀) = 2)
44 2nn0 12459 . . . . . . 7 2 ∈ ℕ0
4544a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ0)
4643, 45eqeltrd 2828 . . . . 5 (𝜑 → (𝐸𝑀) ∈ ℕ0)
4710ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑀𝑈)
48 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑗 ∈ ℕ0)
49 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐸𝑀) < 𝑗)
50 evl1deg2.e . . . . . . . . . . 11 𝐸 = (deg1𝑅)
5150, 6, 8, 18, 13deg1lt 26002 . . . . . . . . . 10 ((𝑀𝑈𝑗 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5247, 48, 49, 51syl3anc 1373 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5352oveq1d 7402 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = ((0g𝑅) · (𝑗 𝑋)))
5420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑅 ∈ Ring)
5554, 29syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd)
5615ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑋𝐾)
5728, 12, 55, 48, 56mulgnn0cld 19027 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝑗 𝑋) ∈ 𝐾)
587, 11, 18, 54, 57ringlzd 20204 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((0g𝑅) · (𝑗 𝑋)) = (0g𝑅))
5953, 58eqtrd 2764 . . . . . . 7 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))
6059ex 412 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6160ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6242, 46, 61rspcedvdw 3591 . . . 4 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6336, 35, 39, 62mptnn0fsuppd 13963 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
64 fzouzdisj 13656 . . . 4 ((0..^3) ∩ (ℤ‘3)) = ∅
6564a1i 11 . . 3 (𝜑 → ((0..^3) ∩ (ℤ‘3)) = ∅)
66 nn0uz 12835 . . . . 5 0 = (ℤ‘0)
67 3nn0 12460 . . . . . . 7 3 ∈ ℕ0
6867, 66eleqtri 2826 . . . . . 6 3 ∈ (ℤ‘0)
69 fzouzsplit 13655 . . . . . 6 (3 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^3) ∪ (ℤ‘3)))
7068, 69ax-mp 5 . . . . 5 (ℤ‘0) = ((0..^3) ∪ (ℤ‘3))
7166, 70eqtri 2752 . . . 4 0 = ((0..^3) ∪ (ℤ‘3))
7271a1i 11 . . 3 (𝜑 → ℕ0 = ((0..^3) ∪ (ℤ‘3)))
737, 18, 19, 21, 23, 35, 63, 65, 72gsumsplit2 19859 . 2 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
74 fzo0to3tp 13713 . . . . . . 7 (0..^3) = {0, 1, 2}
7574a1i 11 . . . . . 6 (𝜑 → (0..^3) = {0, 1, 2})
7675mpteq1d 5197 . . . . 5 (𝜑 → (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))))
7776oveq2d 7403 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
7810adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑀𝑈)
79 uzss 12816 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘0) → (ℤ‘3) ⊆ (ℤ‘0))
8068, 79ax-mp 5 . . . . . . . . . . . . 13 (ℤ‘3) ⊆ (ℤ‘0)
8180, 66sseqtrri 3996 . . . . . . . . . . . 12 (ℤ‘3) ⊆ ℕ0
8281a1i 11 . . . . . . . . . . 11 (𝜑 → (ℤ‘3) ⊆ ℕ0)
8382sselda 3946 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑘 ∈ ℕ0)
8443adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐸𝑀) = 2)
85 2p1e3 12323 . . . . . . . . . . . . . . 15 (2 + 1) = 3
8685fveq2i 6861 . . . . . . . . . . . . . 14 (ℤ‘(2 + 1)) = (ℤ‘3)
8786eleq2i 2820 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘(2 + 1)) ↔ 𝑘 ∈ (ℤ‘3))
88 2z 12565 . . . . . . . . . . . . . 14 2 ∈ ℤ
89 eluzp1l 12820 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(2 + 1))) → 2 < 𝑘)
9088, 89mpan 690 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘(2 + 1)) → 2 < 𝑘)
9187, 90sylbir 235 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘3) → 2 < 𝑘)
9291adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘3)) → 2 < 𝑘)
9384, 92eqbrtrd 5129 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐸𝑀) < 𝑘)
9450, 6, 8, 18, 13deg1lt 26002 . . . . . . . . . 10 ((𝑀𝑈𝑘 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑘) → (𝐹𝑘) = (0g𝑅))
9578, 83, 93, 94syl3anc 1373 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐹𝑘) = (0g𝑅))
9695oveq1d 7402 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘3)) → ((𝐹𝑘) · (𝑘 𝑋)) = ((0g𝑅) · (𝑘 𝑋)))
9720adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑅 ∈ Ring)
9897, 29syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → (mulGrp‘𝑅) ∈ Mnd)
9915adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑋𝐾)
10028, 12, 98, 83, 99mulgnn0cld 19027 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝑘 𝑋) ∈ 𝐾)
1017, 11, 18, 97, 100ringlzd 20204 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘3)) → ((0g𝑅) · (𝑘 𝑋)) = (0g𝑅))
10296, 101eqtrd 2764 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘3)) → ((𝐹𝑘) · (𝑘 𝑋)) = (0g𝑅))
103102mpteq2dva 5200 . . . . . 6 (𝜑 → (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅)))
104103oveq2d 7403 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))))
1059crnggrpd 20156 . . . . . . 7 (𝜑𝑅 ∈ Grp)
106105grpmndd 18878 . . . . . 6 (𝜑𝑅 ∈ Mnd)
107 fvexd 6873 . . . . . 6 (𝜑 → (ℤ‘3) ∈ V)
10818gsumz 18763 . . . . . 6 ((𝑅 ∈ Mnd ∧ (ℤ‘3) ∈ V) → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))) = (0g𝑅))
109106, 107, 108syl2anc 584 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))) = (0g𝑅))
110104, 109eqtrd 2764 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (0g𝑅))
11177, 110oveq12d 7405 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = ((𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (0g𝑅)))
112 tpex 7722 . . . . . 6 {0, 1, 2} ∈ V
113112a1i 11 . . . . 5 (𝜑 → {0, 1, 2} ∈ V)
11420adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝑅 ∈ Ring)
11513, 8, 6, 7coe1f 22096 . . . . . . . . . 10 (𝑀𝑈𝐹:ℕ0𝐾)
11610, 115syl 17 . . . . . . . . 9 (𝜑𝐹:ℕ0𝐾)
117116adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝐹:ℕ0𝐾)
118 fzo0ssnn0 13707 . . . . . . . . . 10 (0..^3) ⊆ ℕ0
11975, 118eqsstrrdi 3992 . . . . . . . . 9 (𝜑 → {0, 1, 2} ⊆ ℕ0)
120119sselda 3946 . . . . . . . 8 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝑘 ∈ ℕ0)
121117, 120ffvelcdmd 7057 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → (𝐹𝑘) ∈ 𝐾)
122120, 34syldan 591 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → (𝑘 𝑋) ∈ 𝐾)
1237, 11, 114, 121, 122ringcld 20169 . . . . . 6 ((𝜑𝑘 ∈ {0, 1, 2}) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
124123fmpttd 7087 . . . . 5 (𝜑 → (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))):{0, 1, 2}⟶𝐾)
125 fzofi 13939 . . . . . . 7 (0..^3) ∈ Fin
12675, 125eqeltrrdi 2837 . . . . . 6 (𝜑 → {0, 1, 2} ∈ Fin)
127124, 126, 36fidmfisupp 9323 . . . . 5 (𝜑 → (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
1287, 18, 21, 113, 124, 127gsumcl 19845 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ 𝐾)
1297, 19, 18, 105, 128grpridd 18902 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
130 fveq2 6858 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
131 evl1deg2.c . . . . . . 7 𝐶 = (𝐹‘0)
132130, 131eqtr4di 2782 . . . . . 6 (𝑘 = 0 → (𝐹𝑘) = 𝐶)
133 oveq1 7394 . . . . . 6 (𝑘 = 0 → (𝑘 𝑋) = (0 𝑋))
134132, 133oveq12d 7405 . . . . 5 (𝑘 = 0 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐶 · (0 𝑋)))
135 fveq2 6858 . . . . . . 7 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
136 evl1deg2.b . . . . . . 7 𝐵 = (𝐹‘1)
137135, 136eqtr4di 2782 . . . . . 6 (𝑘 = 1 → (𝐹𝑘) = 𝐵)
138 oveq1 7394 . . . . . 6 (𝑘 = 1 → (𝑘 𝑋) = (1 𝑋))
139137, 138oveq12d 7405 . . . . 5 (𝑘 = 1 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐵 · (1 𝑋)))
140 fveq2 6858 . . . . . . 7 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
141 evl1deg2.a . . . . . . 7 𝐴 = (𝐹‘2)
142140, 141eqtr4di 2782 . . . . . 6 (𝑘 = 2 → (𝐹𝑘) = 𝐴)
143 oveq1 7394 . . . . . 6 (𝑘 = 2 → (𝑘 𝑋) = (2 𝑋))
144142, 143oveq12d 7405 . . . . 5 (𝑘 = 2 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐴 · (2 𝑋)))
145 0nn0 12457 . . . . . 6 0 ∈ ℕ0
146145a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
147 1nn0 12458 . . . . . 6 1 ∈ ℕ0
148147a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
149 0ne1 12257 . . . . . 6 0 ≠ 1
150149a1i 11 . . . . 5 (𝜑 → 0 ≠ 1)
151 1ne2 12389 . . . . . 6 1 ≠ 2
152151a1i 11 . . . . 5 (𝜑 → 1 ≠ 2)
153 0ne2 12388 . . . . . 6 0 ≠ 2
154153a1i 11 . . . . 5 (𝜑 → 0 ≠ 2)
15513, 8, 6, 7coe1fvalcl 22097 . . . . . . . 8 ((𝑀𝑈 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ 𝐾)
15610, 145, 155sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ 𝐾)
157131, 156eqeltrid 2832 . . . . . 6 (𝜑𝐶𝐾)
15828, 12, 30, 146, 15mulgnn0cld 19027 . . . . . 6 (𝜑 → (0 𝑋) ∈ 𝐾)
1597, 11, 20, 157, 158ringcld 20169 . . . . 5 (𝜑 → (𝐶 · (0 𝑋)) ∈ 𝐾)
16013, 8, 6, 7coe1fvalcl 22097 . . . . . . . 8 ((𝑀𝑈 ∧ 1 ∈ ℕ0) → (𝐹‘1) ∈ 𝐾)
16110, 147, 160sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ 𝐾)
162136, 161eqeltrid 2832 . . . . . 6 (𝜑𝐵𝐾)
16328, 12, 30, 148, 15mulgnn0cld 19027 . . . . . 6 (𝜑 → (1 𝑋) ∈ 𝐾)
1647, 11, 20, 162, 163ringcld 20169 . . . . 5 (𝜑 → (𝐵 · (1 𝑋)) ∈ 𝐾)
16513, 8, 6, 7coe1fvalcl 22097 . . . . . . . 8 ((𝑀𝑈 ∧ 2 ∈ ℕ0) → (𝐹‘2) ∈ 𝐾)
16610, 44, 165sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘2) ∈ 𝐾)
167141, 166eqeltrid 2832 . . . . . 6 (𝜑𝐴𝐾)
16828, 12, 30, 45, 15mulgnn0cld 19027 . . . . . 6 (𝜑 → (2 𝑋) ∈ 𝐾)
1697, 11, 20, 167, 168ringcld 20169 . . . . 5 (𝜑 → (𝐴 · (2 𝑋)) ∈ 𝐾)
1707, 19, 134, 139, 144, 21, 146, 148, 45, 150, 152, 154, 159, 164, 169gsumtp 32998 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))))
1717, 19, 105, 159, 164grpcld 18879 . . . . 5 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) ∈ 𝐾)
1727, 19cmncom 19728 . . . . 5 ((𝑅 ∈ CMnd ∧ ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) ∈ 𝐾 ∧ (𝐴 · (2 𝑋)) ∈ 𝐾) → (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))) = ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))))
17321, 171, 169, 172syl3anc 1373 . . . 4 (𝜑 → (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))) = ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))))
1747, 19cmncom 19728 . . . . . . 7 ((𝑅 ∈ CMnd ∧ (𝐶 · (0 𝑋)) ∈ 𝐾 ∧ (𝐵 · (1 𝑋)) ∈ 𝐾) → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))))
17521, 159, 164, 174syl3anc 1373 . . . . . 6 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))))
17628, 12mulg1 19013 . . . . . . . . 9 (𝑋𝐾 → (1 𝑋) = 𝑋)
17715, 176syl 17 . . . . . . . 8 (𝜑 → (1 𝑋) = 𝑋)
178177oveq2d 7403 . . . . . . 7 (𝜑 → (𝐵 · (1 𝑋)) = (𝐵 · 𝑋))
179 eqid 2729 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
18027, 179ringidval 20092 . . . . . . . . . . 11 (1r𝑅) = (0g‘(mulGrp‘𝑅))
18128, 180, 12mulg0 19006 . . . . . . . . . 10 (𝑋𝐾 → (0 𝑋) = (1r𝑅))
18215, 181syl 17 . . . . . . . . 9 (𝜑 → (0 𝑋) = (1r𝑅))
183182oveq2d 7403 . . . . . . . 8 (𝜑 → (𝐶 · (0 𝑋)) = (𝐶 · (1r𝑅)))
1847, 11, 179, 20, 157ringridmd 20182 . . . . . . . 8 (𝜑 → (𝐶 · (1r𝑅)) = 𝐶)
185183, 184eqtrd 2764 . . . . . . 7 (𝜑 → (𝐶 · (0 𝑋)) = 𝐶)
186178, 185oveq12d 7405 . . . . . 6 (𝜑 → ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))) = ((𝐵 · 𝑋) + 𝐶))
187175, 186eqtrd 2764 . . . . 5 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · 𝑋) + 𝐶))
188187oveq2d 7403 . . . 4 (𝜑 → ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
189170, 173, 1883eqtrd 2768 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
190111, 129, 1893eqtrd 2768 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
19117, 73, 1903eqtrd 2768 1 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cun 3912  cin 3913  wss 3914  c0 4296  {ctp 4593   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cuz 12793  ..^cfzo 13615  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  Poly1cpl1 22061  coe1cco1 22062  eval1ce1 22201  deg1cdg1 25959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-mdeg 25960  df-deg1 25961
This theorem is referenced by:  rtelextdg2lem  33716
  Copyright terms: Public domain W3C validator