Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1deg2 Structured version   Visualization version   GIF version

Theorem evl1deg2 33582
Description: Evaluation of a univariate polynomial of degree 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
evl1deg1.1 𝑃 = (Poly1𝑅)
evl1deg1.2 𝑂 = (eval1𝑅)
evl1deg1.3 𝐾 = (Base‘𝑅)
evl1deg1.4 𝑈 = (Base‘𝑃)
evl1deg1.5 · = (.r𝑅)
evl1deg1.6 + = (+g𝑅)
evl1deg2.p = (.g‘(mulGrp‘𝑅))
evl1deg2.f 𝐹 = (coe1𝑀)
evl1deg2.e 𝐸 = (deg1𝑅)
evl1deg2.a 𝐴 = (𝐹‘2)
evl1deg2.b 𝐵 = (𝐹‘1)
evl1deg2.c 𝐶 = (𝐹‘0)
evl1deg2.r (𝜑𝑅 ∈ CRing)
evl1deg2.m (𝜑𝑀𝑈)
evl1deg2.1 (𝜑 → (𝐸𝑀) = 2)
evl1deg2.x (𝜑𝑋𝐾)
Assertion
Ref Expression
evl1deg2 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))

Proof of Theorem evl1deg2
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . 6 (𝑥 = 𝑋 → (𝑘 𝑥) = (𝑘 𝑋))
21oveq2d 7447 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑘) · (𝑘 𝑥)) = ((𝐹𝑘) · (𝑘 𝑋)))
32mpteq2dv 5250 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))))
43oveq2d 7447 . . 3 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
5 evl1deg1.2 . . . 4 𝑂 = (eval1𝑅)
6 evl1deg1.1 . . . 4 𝑃 = (Poly1𝑅)
7 evl1deg1.3 . . . 4 𝐾 = (Base‘𝑅)
8 evl1deg1.4 . . . 4 𝑈 = (Base‘𝑃)
9 evl1deg2.r . . . 4 (𝜑𝑅 ∈ CRing)
10 evl1deg2.m . . . 4 (𝜑𝑀𝑈)
11 evl1deg1.5 . . . 4 · = (.r𝑅)
12 evl1deg2.p . . . 4 = (.g‘(mulGrp‘𝑅))
13 evl1deg2.f . . . 4 𝐹 = (coe1𝑀)
145, 6, 7, 8, 9, 10, 11, 12, 13evl1fpws 33570 . . 3 (𝜑 → (𝑂𝑀) = (𝑥𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))))))
15 evl1deg2.x . . 3 (𝜑𝑋𝐾)
16 ovexd 7466 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ V)
174, 14, 15, 16fvmptd4 7040 . 2 (𝜑 → ((𝑂𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
18 eqid 2735 . . 3 (0g𝑅) = (0g𝑅)
19 evl1deg1.6 . . 3 + = (+g𝑅)
209crngringd 20264 . . . 4 (𝜑𝑅 ∈ Ring)
2120ringcmnd 20298 . . 3 (𝜑𝑅 ∈ CMnd)
22 nn0ex 12530 . . . 4 0 ∈ V
2322a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
2420adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
2513, 8, 6, 7coe1fvalcl 22230 . . . . 5 ((𝑀𝑈𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
2610, 25sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
27 eqid 2735 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 7mgpbas 20158 . . . . 5 𝐾 = (Base‘(mulGrp‘𝑅))
2927ringmgp 20257 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3020, 29syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
3130adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑅) ∈ Mnd)
32 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3315adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑋𝐾)
3428, 12, 31, 32, 33mulgnn0cld 19126 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐾)
357, 11, 24, 26, 34ringcld 20277 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
36 fvexd 6922 . . . 4 (𝜑 → (0g𝑅) ∈ V)
37 fveq2 6907 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
38 oveq1 7438 . . . . 5 (𝑘 = 𝑗 → (𝑘 𝑋) = (𝑗 𝑋))
3937, 38oveq12d 7449 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹𝑗) · (𝑗 𝑋)))
40 breq1 5151 . . . . . . 7 (𝑖 = (𝐸𝑀) → (𝑖 < 𝑗 ↔ (𝐸𝑀) < 𝑗))
4140imbi1d 341 . . . . . 6 (𝑖 = (𝐸𝑀) → ((𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
4241ralbidv 3176 . . . . 5 (𝑖 = (𝐸𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
43 evl1deg2.1 . . . . . 6 (𝜑 → (𝐸𝑀) = 2)
44 2nn0 12541 . . . . . . 7 2 ∈ ℕ0
4544a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ0)
4643, 45eqeltrd 2839 . . . . 5 (𝜑 → (𝐸𝑀) ∈ ℕ0)
4710ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑀𝑈)
48 simplr 769 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑗 ∈ ℕ0)
49 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐸𝑀) < 𝑗)
50 evl1deg2.e . . . . . . . . . . 11 𝐸 = (deg1𝑅)
5150, 6, 8, 18, 13deg1lt 26151 . . . . . . . . . 10 ((𝑀𝑈𝑗 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5247, 48, 49, 51syl3anc 1370 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5352oveq1d 7446 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = ((0g𝑅) · (𝑗 𝑋)))
5420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑅 ∈ Ring)
5554, 29syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd)
5615ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑋𝐾)
5728, 12, 55, 48, 56mulgnn0cld 19126 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝑗 𝑋) ∈ 𝐾)
587, 11, 18, 54, 57ringlzd 20309 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((0g𝑅) · (𝑗 𝑋)) = (0g𝑅))
5953, 58eqtrd 2775 . . . . . . 7 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))
6059ex 412 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6160ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6242, 46, 61rspcedvdw 3625 . . . 4 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6336, 35, 39, 62mptnn0fsuppd 14036 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
64 fzouzdisj 13732 . . . 4 ((0..^3) ∩ (ℤ‘3)) = ∅
6564a1i 11 . . 3 (𝜑 → ((0..^3) ∩ (ℤ‘3)) = ∅)
66 nn0uz 12918 . . . . 5 0 = (ℤ‘0)
67 3nn0 12542 . . . . . . 7 3 ∈ ℕ0
6867, 66eleqtri 2837 . . . . . 6 3 ∈ (ℤ‘0)
69 fzouzsplit 13731 . . . . . 6 (3 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^3) ∪ (ℤ‘3)))
7068, 69ax-mp 5 . . . . 5 (ℤ‘0) = ((0..^3) ∪ (ℤ‘3))
7166, 70eqtri 2763 . . . 4 0 = ((0..^3) ∪ (ℤ‘3))
7271a1i 11 . . 3 (𝜑 → ℕ0 = ((0..^3) ∪ (ℤ‘3)))
737, 18, 19, 21, 23, 35, 63, 65, 72gsumsplit2 19962 . 2 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
74 fzo0to3tp 13788 . . . . . . 7 (0..^3) = {0, 1, 2}
7574a1i 11 . . . . . 6 (𝜑 → (0..^3) = {0, 1, 2})
7675mpteq1d 5243 . . . . 5 (𝜑 → (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))))
7776oveq2d 7447 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
7810adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑀𝑈)
79 uzss 12899 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘0) → (ℤ‘3) ⊆ (ℤ‘0))
8068, 79ax-mp 5 . . . . . . . . . . . . 13 (ℤ‘3) ⊆ (ℤ‘0)
8180, 66sseqtrri 4033 . . . . . . . . . . . 12 (ℤ‘3) ⊆ ℕ0
8281a1i 11 . . . . . . . . . . 11 (𝜑 → (ℤ‘3) ⊆ ℕ0)
8382sselda 3995 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑘 ∈ ℕ0)
8443adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐸𝑀) = 2)
85 2p1e3 12406 . . . . . . . . . . . . . . 15 (2 + 1) = 3
8685fveq2i 6910 . . . . . . . . . . . . . 14 (ℤ‘(2 + 1)) = (ℤ‘3)
8786eleq2i 2831 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘(2 + 1)) ↔ 𝑘 ∈ (ℤ‘3))
88 2z 12647 . . . . . . . . . . . . . 14 2 ∈ ℤ
89 eluzp1l 12903 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(2 + 1))) → 2 < 𝑘)
9088, 89mpan 690 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘(2 + 1)) → 2 < 𝑘)
9187, 90sylbir 235 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘3) → 2 < 𝑘)
9291adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘3)) → 2 < 𝑘)
9384, 92eqbrtrd 5170 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐸𝑀) < 𝑘)
9450, 6, 8, 18, 13deg1lt 26151 . . . . . . . . . 10 ((𝑀𝑈𝑘 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑘) → (𝐹𝑘) = (0g𝑅))
9578, 83, 93, 94syl3anc 1370 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝐹𝑘) = (0g𝑅))
9695oveq1d 7446 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘3)) → ((𝐹𝑘) · (𝑘 𝑋)) = ((0g𝑅) · (𝑘 𝑋)))
9720adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑅 ∈ Ring)
9897, 29syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → (mulGrp‘𝑅) ∈ Mnd)
9915adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘3)) → 𝑋𝐾)
10028, 12, 98, 83, 99mulgnn0cld 19126 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘3)) → (𝑘 𝑋) ∈ 𝐾)
1017, 11, 18, 97, 100ringlzd 20309 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘3)) → ((0g𝑅) · (𝑘 𝑋)) = (0g𝑅))
10296, 101eqtrd 2775 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘3)) → ((𝐹𝑘) · (𝑘 𝑋)) = (0g𝑅))
103102mpteq2dva 5248 . . . . . 6 (𝜑 → (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅)))
104103oveq2d 7447 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))))
1059crnggrpd 20265 . . . . . . 7 (𝜑𝑅 ∈ Grp)
106105grpmndd 18977 . . . . . 6 (𝜑𝑅 ∈ Mnd)
107 fvexd 6922 . . . . . 6 (𝜑 → (ℤ‘3) ∈ V)
10818gsumz 18862 . . . . . 6 ((𝑅 ∈ Mnd ∧ (ℤ‘3) ∈ V) → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))) = (0g𝑅))
109106, 107, 108syl2anc 584 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ (0g𝑅))) = (0g𝑅))
110104, 109eqtrd 2775 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (0g𝑅))
11177, 110oveq12d 7449 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = ((𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (0g𝑅)))
112 tpex 7765 . . . . . 6 {0, 1, 2} ∈ V
113112a1i 11 . . . . 5 (𝜑 → {0, 1, 2} ∈ V)
11420adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝑅 ∈ Ring)
11513, 8, 6, 7coe1f 22229 . . . . . . . . . 10 (𝑀𝑈𝐹:ℕ0𝐾)
11610, 115syl 17 . . . . . . . . 9 (𝜑𝐹:ℕ0𝐾)
117116adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝐹:ℕ0𝐾)
118 fzo0ssnn0 13782 . . . . . . . . . 10 (0..^3) ⊆ ℕ0
11975, 118eqsstrrdi 4051 . . . . . . . . 9 (𝜑 → {0, 1, 2} ⊆ ℕ0)
120119sselda 3995 . . . . . . . 8 ((𝜑𝑘 ∈ {0, 1, 2}) → 𝑘 ∈ ℕ0)
121117, 120ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → (𝐹𝑘) ∈ 𝐾)
122120, 34syldan 591 . . . . . . 7 ((𝜑𝑘 ∈ {0, 1, 2}) → (𝑘 𝑋) ∈ 𝐾)
1237, 11, 114, 121, 122ringcld 20277 . . . . . 6 ((𝜑𝑘 ∈ {0, 1, 2}) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
124123fmpttd 7135 . . . . 5 (𝜑 → (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))):{0, 1, 2}⟶𝐾)
125 fzofi 14012 . . . . . . 7 (0..^3) ∈ Fin
12675, 125eqeltrrdi 2848 . . . . . 6 (𝜑 → {0, 1, 2} ∈ Fin)
127124, 126, 36fidmfisupp 9410 . . . . 5 (𝜑 → (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
1287, 18, 21, 113, 124, 127gsumcl 19948 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ 𝐾)
1297, 19, 18, 105, 128grpridd 19001 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
130 fveq2 6907 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
131 evl1deg2.c . . . . . . 7 𝐶 = (𝐹‘0)
132130, 131eqtr4di 2793 . . . . . 6 (𝑘 = 0 → (𝐹𝑘) = 𝐶)
133 oveq1 7438 . . . . . 6 (𝑘 = 0 → (𝑘 𝑋) = (0 𝑋))
134132, 133oveq12d 7449 . . . . 5 (𝑘 = 0 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐶 · (0 𝑋)))
135 fveq2 6907 . . . . . . 7 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
136 evl1deg2.b . . . . . . 7 𝐵 = (𝐹‘1)
137135, 136eqtr4di 2793 . . . . . 6 (𝑘 = 1 → (𝐹𝑘) = 𝐵)
138 oveq1 7438 . . . . . 6 (𝑘 = 1 → (𝑘 𝑋) = (1 𝑋))
139137, 138oveq12d 7449 . . . . 5 (𝑘 = 1 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐵 · (1 𝑋)))
140 fveq2 6907 . . . . . . 7 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
141 evl1deg2.a . . . . . . 7 𝐴 = (𝐹‘2)
142140, 141eqtr4di 2793 . . . . . 6 (𝑘 = 2 → (𝐹𝑘) = 𝐴)
143 oveq1 7438 . . . . . 6 (𝑘 = 2 → (𝑘 𝑋) = (2 𝑋))
144142, 143oveq12d 7449 . . . . 5 (𝑘 = 2 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐴 · (2 𝑋)))
145 0nn0 12539 . . . . . 6 0 ∈ ℕ0
146145a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
147 1nn0 12540 . . . . . 6 1 ∈ ℕ0
148147a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
149 0ne1 12335 . . . . . 6 0 ≠ 1
150149a1i 11 . . . . 5 (𝜑 → 0 ≠ 1)
151 1ne2 12472 . . . . . 6 1 ≠ 2
152151a1i 11 . . . . 5 (𝜑 → 1 ≠ 2)
153 0ne2 12471 . . . . . 6 0 ≠ 2
154153a1i 11 . . . . 5 (𝜑 → 0 ≠ 2)
15513, 8, 6, 7coe1fvalcl 22230 . . . . . . . 8 ((𝑀𝑈 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ 𝐾)
15610, 145, 155sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ 𝐾)
157131, 156eqeltrid 2843 . . . . . 6 (𝜑𝐶𝐾)
15828, 12, 30, 146, 15mulgnn0cld 19126 . . . . . 6 (𝜑 → (0 𝑋) ∈ 𝐾)
1597, 11, 20, 157, 158ringcld 20277 . . . . 5 (𝜑 → (𝐶 · (0 𝑋)) ∈ 𝐾)
16013, 8, 6, 7coe1fvalcl 22230 . . . . . . . 8 ((𝑀𝑈 ∧ 1 ∈ ℕ0) → (𝐹‘1) ∈ 𝐾)
16110, 147, 160sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ 𝐾)
162136, 161eqeltrid 2843 . . . . . 6 (𝜑𝐵𝐾)
16328, 12, 30, 148, 15mulgnn0cld 19126 . . . . . 6 (𝜑 → (1 𝑋) ∈ 𝐾)
1647, 11, 20, 162, 163ringcld 20277 . . . . 5 (𝜑 → (𝐵 · (1 𝑋)) ∈ 𝐾)
16513, 8, 6, 7coe1fvalcl 22230 . . . . . . . 8 ((𝑀𝑈 ∧ 2 ∈ ℕ0) → (𝐹‘2) ∈ 𝐾)
16610, 44, 165sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘2) ∈ 𝐾)
167141, 166eqeltrid 2843 . . . . . 6 (𝜑𝐴𝐾)
16828, 12, 30, 45, 15mulgnn0cld 19126 . . . . . 6 (𝜑 → (2 𝑋) ∈ 𝐾)
1697, 11, 20, 167, 168ringcld 20277 . . . . 5 (𝜑 → (𝐴 · (2 𝑋)) ∈ 𝐾)
1707, 19, 134, 139, 144, 21, 146, 148, 45, 150, 152, 154, 159, 164, 169gsumtp 33044 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))))
1717, 19, 105, 159, 164grpcld 18978 . . . . 5 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) ∈ 𝐾)
1727, 19cmncom 19831 . . . . 5 ((𝑅 ∈ CMnd ∧ ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) ∈ 𝐾 ∧ (𝐴 · (2 𝑋)) ∈ 𝐾) → (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))) = ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))))
17321, 171, 169, 172syl3anc 1370 . . . 4 (𝜑 → (((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) + (𝐴 · (2 𝑋))) = ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))))
1747, 19cmncom 19831 . . . . . . 7 ((𝑅 ∈ CMnd ∧ (𝐶 · (0 𝑋)) ∈ 𝐾 ∧ (𝐵 · (1 𝑋)) ∈ 𝐾) → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))))
17521, 159, 164, 174syl3anc 1370 . . . . . 6 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))))
17628, 12mulg1 19112 . . . . . . . . 9 (𝑋𝐾 → (1 𝑋) = 𝑋)
17715, 176syl 17 . . . . . . . 8 (𝜑 → (1 𝑋) = 𝑋)
178177oveq2d 7447 . . . . . . 7 (𝜑 → (𝐵 · (1 𝑋)) = (𝐵 · 𝑋))
179 eqid 2735 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
18027, 179ringidval 20201 . . . . . . . . . . 11 (1r𝑅) = (0g‘(mulGrp‘𝑅))
18128, 180, 12mulg0 19105 . . . . . . . . . 10 (𝑋𝐾 → (0 𝑋) = (1r𝑅))
18215, 181syl 17 . . . . . . . . 9 (𝜑 → (0 𝑋) = (1r𝑅))
183182oveq2d 7447 . . . . . . . 8 (𝜑 → (𝐶 · (0 𝑋)) = (𝐶 · (1r𝑅)))
1847, 11, 179, 20, 157ringridmd 20287 . . . . . . . 8 (𝜑 → (𝐶 · (1r𝑅)) = 𝐶)
185183, 184eqtrd 2775 . . . . . . 7 (𝜑 → (𝐶 · (0 𝑋)) = 𝐶)
186178, 185oveq12d 7449 . . . . . 6 (𝜑 → ((𝐵 · (1 𝑋)) + (𝐶 · (0 𝑋))) = ((𝐵 · 𝑋) + 𝐶))
187175, 186eqtrd 2775 . . . . 5 (𝜑 → ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋))) = ((𝐵 · 𝑋) + 𝐶))
188187oveq2d 7447 . . . 4 (𝜑 → ((𝐴 · (2 𝑋)) + ((𝐶 · (0 𝑋)) + (𝐵 · (1 𝑋)))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
189170, 173, 1883eqtrd 2779 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1, 2} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
190111, 129, 1893eqtrd 2779 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^3) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘3) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
19117, 73, 1903eqtrd 2779 1 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · (2 𝑋)) + ((𝐵 · 𝑋) + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cun 3961  cin 3962  wss 3963  c0 4339  {ctp 4635   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  2c2 12319  3c3 12320  0cn0 12524  cz 12611  cuz 12876  ..^cfzo 13691  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760  .gcmg 19098  CMndccmn 19813  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251  CRingccrg 20252  Poly1cpl1 22194  coe1cco1 22195  eval1ce1 22334  deg1cdg1 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-cnfld 21383  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evls1 22335  df-evl1 22336  df-mdeg 26109  df-deg1 26110
This theorem is referenced by:  rtelextdg2lem  33732
  Copyright terms: Public domain W3C validator