Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1deg3 Structured version   Visualization version   GIF version

Theorem evl1deg3 33547
Description: Evaluation of a univariate polynomial of degree 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
Hypotheses
Ref Expression
evl1deg1.1 𝑃 = (Poly1𝑅)
evl1deg1.2 𝑂 = (eval1𝑅)
evl1deg1.3 𝐾 = (Base‘𝑅)
evl1deg1.4 𝑈 = (Base‘𝑃)
evl1deg1.5 · = (.r𝑅)
evl1deg1.6 + = (+g𝑅)
evl1deg2.p = (.g‘(mulGrp‘𝑅))
evl1deg3.f 𝐹 = (coe1𝑀)
evl1deg3.e 𝐸 = (deg1𝑅)
evl1deg3.a 𝐴 = (𝐹‘3)
evl1deg3.b 𝐵 = (𝐹‘2)
evl1deg3.c 𝐶 = (𝐹‘1)
evl1deg3.d 𝐷 = (𝐹‘0)
evl1deg3.r (𝜑𝑅 ∈ CRing)
evl1deg3.m (𝜑𝑀𝑈)
evl1deg3.1 (𝜑 → (𝐸𝑀) = 3)
evl1deg3.x (𝜑𝑋𝐾)
Assertion
Ref Expression
evl1deg3 (𝜑 → ((𝑂𝑀)‘𝑋) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))

Proof of Theorem evl1deg3
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . 6 (𝑥 = 𝑋 → (𝑘 𝑥) = (𝑘 𝑋))
21oveq2d 7403 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑘) · (𝑘 𝑥)) = ((𝐹𝑘) · (𝑘 𝑋)))
32mpteq2dv 5201 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))))
43oveq2d 7403 . . 3 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
5 evl1deg1.2 . . . 4 𝑂 = (eval1𝑅)
6 evl1deg1.1 . . . 4 𝑃 = (Poly1𝑅)
7 evl1deg1.3 . . . 4 𝐾 = (Base‘𝑅)
8 evl1deg1.4 . . . 4 𝑈 = (Base‘𝑃)
9 evl1deg3.r . . . 4 (𝜑𝑅 ∈ CRing)
10 evl1deg3.m . . . 4 (𝜑𝑀𝑈)
11 evl1deg1.5 . . . 4 · = (.r𝑅)
12 evl1deg2.p . . . 4 = (.g‘(mulGrp‘𝑅))
13 evl1deg3.f . . . 4 𝐹 = (coe1𝑀)
145, 6, 7, 8, 9, 10, 11, 12, 13evl1fpws 33533 . . 3 (𝜑 → (𝑂𝑀) = (𝑥𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))))))
15 evl1deg3.x . . 3 (𝜑𝑋𝐾)
16 ovexd 7422 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ V)
174, 14, 15, 16fvmptd4 6992 . 2 (𝜑 → ((𝑂𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
18 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
19 evl1deg1.6 . . 3 + = (+g𝑅)
209crngringd 20155 . . . 4 (𝜑𝑅 ∈ Ring)
2120ringcmnd 20193 . . 3 (𝜑𝑅 ∈ CMnd)
22 nn0ex 12448 . . . 4 0 ∈ V
2322a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
2420adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
2513, 8, 6, 7coe1fvalcl 22097 . . . . 5 ((𝑀𝑈𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
2610, 25sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
27 eqid 2729 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 7mgpbas 20054 . . . . 5 𝐾 = (Base‘(mulGrp‘𝑅))
2927ringmgp 20148 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3020, 29syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
3130adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑅) ∈ Mnd)
32 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3315adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑋𝐾)
3428, 12, 31, 32, 33mulgnn0cld 19027 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐾)
357, 11, 24, 26, 34ringcld 20169 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
36 fvexd 6873 . . . 4 (𝜑 → (0g𝑅) ∈ V)
37 fveq2 6858 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
38 oveq1 7394 . . . . 5 (𝑘 = 𝑗 → (𝑘 𝑋) = (𝑗 𝑋))
3937, 38oveq12d 7405 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹𝑗) · (𝑗 𝑋)))
40 breq1 5110 . . . . . . 7 (𝑖 = (𝐸𝑀) → (𝑖 < 𝑗 ↔ (𝐸𝑀) < 𝑗))
4140imbi1d 341 . . . . . 6 (𝑖 = (𝐸𝑀) → ((𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
4241ralbidv 3156 . . . . 5 (𝑖 = (𝐸𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
43 evl1deg3.1 . . . . . 6 (𝜑 → (𝐸𝑀) = 3)
44 3nn0 12460 . . . . . . 7 3 ∈ ℕ0
4544a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
4643, 45eqeltrd 2828 . . . . 5 (𝜑 → (𝐸𝑀) ∈ ℕ0)
4710ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑀𝑈)
48 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑗 ∈ ℕ0)
49 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐸𝑀) < 𝑗)
50 evl1deg3.e . . . . . . . . . . 11 𝐸 = (deg1𝑅)
5150, 6, 8, 18, 13deg1lt 26002 . . . . . . . . . 10 ((𝑀𝑈𝑗 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5247, 48, 49, 51syl3anc 1373 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5352oveq1d 7402 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = ((0g𝑅) · (𝑗 𝑋)))
5420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑅 ∈ Ring)
5554, 29syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd)
5615ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑋𝐾)
5728, 12, 55, 48, 56mulgnn0cld 19027 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝑗 𝑋) ∈ 𝐾)
587, 11, 18, 54, 57ringlzd 20204 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((0g𝑅) · (𝑗 𝑋)) = (0g𝑅))
5953, 58eqtrd 2764 . . . . . . 7 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))
6059ex 412 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6160ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6242, 46, 61rspcedvdw 3591 . . . 4 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6336, 35, 39, 62mptnn0fsuppd 13963 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
64 fzouzdisj 13656 . . . 4 ((0..^4) ∩ (ℤ‘4)) = ∅
6564a1i 11 . . 3 (𝜑 → ((0..^4) ∩ (ℤ‘4)) = ∅)
66 nn0uz 12835 . . . . 5 0 = (ℤ‘0)
67 4nn0 12461 . . . . . . 7 4 ∈ ℕ0
6867, 66eleqtri 2826 . . . . . 6 4 ∈ (ℤ‘0)
69 fzouzsplit 13655 . . . . . 6 (4 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^4) ∪ (ℤ‘4)))
7068, 69ax-mp 5 . . . . 5 (ℤ‘0) = ((0..^4) ∪ (ℤ‘4))
7166, 70eqtri 2752 . . . 4 0 = ((0..^4) ∪ (ℤ‘4))
7271a1i 11 . . 3 (𝜑 → ℕ0 = ((0..^4) ∪ (ℤ‘4)))
737, 18, 19, 21, 23, 35, 63, 65, 72gsumsplit2 19859 . 2 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
74 fzofi 13939 . . . . . 6 (0..^4) ∈ Fin
7574a1i 11 . . . . 5 (𝜑 → (0..^4) ∈ Fin)
76 fzo0ssnn0 13707 . . . . . . . 8 (0..^4) ⊆ ℕ0
7776a1i 11 . . . . . . 7 (𝜑 → (0..^4) ⊆ ℕ0)
7877sselda 3946 . . . . . 6 ((𝜑𝑘 ∈ (0..^4)) → 𝑘 ∈ ℕ0)
7978, 35syldan 591 . . . . 5 ((𝜑𝑘 ∈ (0..^4)) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
80 0ne2 12388 . . . . . . 7 0 ≠ 2
81 1ne2 12389 . . . . . . 7 1 ≠ 2
82 0re 11176 . . . . . . . 8 0 ∈ ℝ
83 3pos 12291 . . . . . . . 8 0 < 3
8482, 83ltneii 11287 . . . . . . 7 0 ≠ 3
85 1re 11174 . . . . . . . 8 1 ∈ ℝ
86 1lt3 12354 . . . . . . . 8 1 < 3
8785, 86ltneii 11287 . . . . . . 7 1 ≠ 3
88 disjpr2 4677 . . . . . . 7 (((0 ≠ 2 ∧ 1 ≠ 2) ∧ (0 ≠ 3 ∧ 1 ≠ 3)) → ({0, 1} ∩ {2, 3}) = ∅)
8980, 81, 84, 87, 88mp4an 693 . . . . . 6 ({0, 1} ∩ {2, 3}) = ∅
9089a1i 11 . . . . 5 (𝜑 → ({0, 1} ∩ {2, 3}) = ∅)
91 fzo0to42pr 13714 . . . . . 6 (0..^4) = ({0, 1} ∪ {2, 3})
9291a1i 11 . . . . 5 (𝜑 → (0..^4) = ({0, 1} ∪ {2, 3}))
937, 19, 21, 75, 79, 90, 92gsummptfidmsplit 19860 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
9410adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑀𝑈)
95 uzss 12816 . . . . . . . . . . . . 13 (4 ∈ (ℤ‘0) → (ℤ‘4) ⊆ (ℤ‘0))
9668, 95ax-mp 5 . . . . . . . . . . . 12 (ℤ‘4) ⊆ (ℤ‘0)
9796, 66sseqtrri 3996 . . . . . . . . . . 11 (ℤ‘4) ⊆ ℕ0
9897a1i 11 . . . . . . . . . 10 (𝜑 → (ℤ‘4) ⊆ ℕ0)
9998sselda 3946 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑘 ∈ ℕ0)
10043adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝐸𝑀) = 3)
101 3p1e4 12326 . . . . . . . . . . . . . 14 (3 + 1) = 4
102101fveq2i 6861 . . . . . . . . . . . . 13 (ℤ‘(3 + 1)) = (ℤ‘4)
103102eleq2i 2820 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(3 + 1)) ↔ 𝑘 ∈ (ℤ‘4))
104 3z 12566 . . . . . . . . . . . . 13 3 ∈ ℤ
105 eluzp1l 12820 . . . . . . . . . . . . 13 ((3 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(3 + 1))) → 3 < 𝑘)
106104, 105mpan 690 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(3 + 1)) → 3 < 𝑘)
107103, 106sylbir 235 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘4) → 3 < 𝑘)
108107adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘4)) → 3 < 𝑘)
109100, 108eqbrtrd 5129 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝐸𝑀) < 𝑘)
11050, 6, 8, 18, 13deg1lt 26002 . . . . . . . . 9 ((𝑀𝑈𝑘 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑘) → (𝐹𝑘) = (0g𝑅))
11194, 99, 109, 110syl3anc 1373 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝐹𝑘) = (0g𝑅))
112111oveq1d 7402 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘4)) → ((𝐹𝑘) · (𝑘 𝑋)) = ((0g𝑅) · (𝑘 𝑋)))
11320adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑅 ∈ Ring)
114113, 29syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → (mulGrp‘𝑅) ∈ Mnd)
11515adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑋𝐾)
11628, 12, 114, 99, 115mulgnn0cld 19027 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝑘 𝑋) ∈ 𝐾)
1177, 11, 18, 113, 116ringlzd 20204 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘4)) → ((0g𝑅) · (𝑘 𝑋)) = (0g𝑅))
118112, 117eqtrd 2764 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘4)) → ((𝐹𝑘) · (𝑘 𝑋)) = (0g𝑅))
119118mpteq2dva 5200 . . . . 5 (𝜑 → (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅)))
120119oveq2d 7403 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅))))
12193, 120oveq12d 7405 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅)))))
122 0nn0 12457 . . . . . . . . 9 0 ∈ ℕ0
123122a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
124 1nn0 12458 . . . . . . . . 9 1 ∈ ℕ0
125124a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ0)
126 0ne1 12257 . . . . . . . . 9 0 ≠ 1
127126a1i 11 . . . . . . . 8 (𝜑 → 0 ≠ 1)
12813, 8, 6, 7coe1fvalcl 22097 . . . . . . . . . 10 ((𝑀𝑈 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ 𝐾)
12910, 122, 128sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘0) ∈ 𝐾)
13028, 12, 30, 123, 15mulgnn0cld 19027 . . . . . . . . 9 (𝜑 → (0 𝑋) ∈ 𝐾)
1317, 11, 20, 129, 130ringcld 20169 . . . . . . . 8 (𝜑 → ((𝐹‘0) · (0 𝑋)) ∈ 𝐾)
13213, 8, 6, 7coe1fvalcl 22097 . . . . . . . . . 10 ((𝑀𝑈 ∧ 1 ∈ ℕ0) → (𝐹‘1) ∈ 𝐾)
13310, 124, 132sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ 𝐾)
13428, 12, 30, 125, 15mulgnn0cld 19027 . . . . . . . . 9 (𝜑 → (1 𝑋) ∈ 𝐾)
1357, 11, 20, 133, 134ringcld 20169 . . . . . . . 8 (𝜑 → ((𝐹‘1) · (1 𝑋)) ∈ 𝐾)
136 fveq2 6858 . . . . . . . . . 10 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
137 oveq1 7394 . . . . . . . . . 10 (𝑘 = 0 → (𝑘 𝑋) = (0 𝑋))
138136, 137oveq12d 7405 . . . . . . . . 9 (𝑘 = 0 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹‘0) · (0 𝑋)))
139 fveq2 6858 . . . . . . . . . 10 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
140 oveq1 7394 . . . . . . . . . 10 (𝑘 = 1 → (𝑘 𝑋) = (1 𝑋))
141139, 140oveq12d 7405 . . . . . . . . 9 (𝑘 = 1 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹‘1) · (1 𝑋)))
1427, 19, 138, 141gsumpr 19885 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1) ∧ (((𝐹‘0) · (0 𝑋)) ∈ 𝐾 ∧ ((𝐹‘1) · (1 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))))
14321, 123, 125, 127, 131, 135, 142syl132anc 1390 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))))
144 eqid 2729 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
145 evl1deg3.d . . . . . . . . . . 11 𝐷 = (𝐹‘0)
146145, 129eqeltrid 2832 . . . . . . . . . 10 (𝜑𝐷𝐾)
1477, 11, 144, 20, 146ringridmd 20182 . . . . . . . . 9 (𝜑 → (𝐷 · (1r𝑅)) = 𝐷)
148147oveq1d 7402 . . . . . . . 8 (𝜑 → ((𝐷 · (1r𝑅)) + (𝐶 · 𝑋)) = (𝐷 + (𝐶 · 𝑋)))
149145a1i 11 . . . . . . . . . 10 (𝜑𝐷 = (𝐹‘0))
15027, 144ringidval 20092 . . . . . . . . . . . . 13 (1r𝑅) = (0g‘(mulGrp‘𝑅))
15128, 150, 12mulg0 19006 . . . . . . . . . . . 12 (𝑋𝐾 → (0 𝑋) = (1r𝑅))
15215, 151syl 17 . . . . . . . . . . 11 (𝜑 → (0 𝑋) = (1r𝑅))
153152eqcomd 2735 . . . . . . . . . 10 (𝜑 → (1r𝑅) = (0 𝑋))
154149, 153oveq12d 7405 . . . . . . . . 9 (𝜑 → (𝐷 · (1r𝑅)) = ((𝐹‘0) · (0 𝑋)))
155 evl1deg3.c . . . . . . . . . . 11 𝐶 = (𝐹‘1)
156155a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝐹‘1))
15728, 12mulg1 19013 . . . . . . . . . . . 12 (𝑋𝐾 → (1 𝑋) = 𝑋)
15815, 157syl 17 . . . . . . . . . . 11 (𝜑 → (1 𝑋) = 𝑋)
159158eqcomd 2735 . . . . . . . . . 10 (𝜑𝑋 = (1 𝑋))
160156, 159oveq12d 7405 . . . . . . . . 9 (𝜑 → (𝐶 · 𝑋) = ((𝐹‘1) · (1 𝑋)))
161154, 160oveq12d 7405 . . . . . . . 8 (𝜑 → ((𝐷 · (1r𝑅)) + (𝐶 · 𝑋)) = (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))))
162160, 135eqeltrd 2828 . . . . . . . . 9 (𝜑 → (𝐶 · 𝑋) ∈ 𝐾)
1637, 19ringcom 20189 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐷𝐾 ∧ (𝐶 · 𝑋) ∈ 𝐾) → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷))
16420, 146, 162, 163syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷))
165148, 161, 1643eqtr3d 2772 . . . . . . 7 (𝜑 → (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))) = ((𝐶 · 𝑋) + 𝐷))
166143, 165eqtrd 2764 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐶 · 𝑋) + 𝐷))
167 2nn0 12459 . . . . . . . . 9 2 ∈ ℕ0
168167a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ0)
169 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
170 2lt3 12353 . . . . . . . . . 10 2 < 3
171169, 170ltneii 11287 . . . . . . . . 9 2 ≠ 3
172171a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 3)
173 evl1deg3.b . . . . . . . . . 10 𝐵 = (𝐹‘2)
17413, 8, 6, 7coe1fvalcl 22097 . . . . . . . . . . 11 ((𝑀𝑈 ∧ 2 ∈ ℕ0) → (𝐹‘2) ∈ 𝐾)
17510, 167, 174sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐹‘2) ∈ 𝐾)
176173, 175eqeltrid 2832 . . . . . . . . 9 (𝜑𝐵𝐾)
17728, 12, 30, 168, 15mulgnn0cld 19027 . . . . . . . . 9 (𝜑 → (2 𝑋) ∈ 𝐾)
1787, 11, 20, 176, 177ringcld 20169 . . . . . . . 8 (𝜑 → (𝐵 · (2 𝑋)) ∈ 𝐾)
179 evl1deg3.a . . . . . . . . . 10 𝐴 = (𝐹‘3)
18013, 8, 6, 7coe1fvalcl 22097 . . . . . . . . . . 11 ((𝑀𝑈 ∧ 3 ∈ ℕ0) → (𝐹‘3) ∈ 𝐾)
18110, 44, 180sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐹‘3) ∈ 𝐾)
182179, 181eqeltrid 2832 . . . . . . . . 9 (𝜑𝐴𝐾)
18328, 12, 30, 45, 15mulgnn0cld 19027 . . . . . . . . 9 (𝜑 → (3 𝑋) ∈ 𝐾)
1847, 11, 20, 182, 183ringcld 20169 . . . . . . . 8 (𝜑 → (𝐴 · (3 𝑋)) ∈ 𝐾)
185 fveq2 6858 . . . . . . . . . . 11 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
186185, 173eqtr4di 2782 . . . . . . . . . 10 (𝑘 = 2 → (𝐹𝑘) = 𝐵)
187 oveq1 7394 . . . . . . . . . 10 (𝑘 = 2 → (𝑘 𝑋) = (2 𝑋))
188186, 187oveq12d 7405 . . . . . . . . 9 (𝑘 = 2 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐵 · (2 𝑋)))
189 fveq2 6858 . . . . . . . . . . 11 (𝑘 = 3 → (𝐹𝑘) = (𝐹‘3))
190189, 179eqtr4di 2782 . . . . . . . . . 10 (𝑘 = 3 → (𝐹𝑘) = 𝐴)
191 oveq1 7394 . . . . . . . . . 10 (𝑘 = 3 → (𝑘 𝑋) = (3 𝑋))
192190, 191oveq12d 7405 . . . . . . . . 9 (𝑘 = 3 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐴 · (3 𝑋)))
1937, 19, 188, 192gsumpr 19885 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≠ 3) ∧ ((𝐵 · (2 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))))
19421, 168, 45, 172, 178, 184, 193syl132anc 1390 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))))
1957, 19cmncom 19728 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (𝐵 · (2 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 𝑋)) ∈ 𝐾) → ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))) = ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))))
19621, 178, 184, 195syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))) = ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))))
197194, 196eqtrd 2764 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))))
198166, 197oveq12d 7405 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋)))))
1999crnggrpd 20156 . . . . . . 7 (𝜑𝑅 ∈ Grp)
2007, 19, 199, 162, 146grpcld 18879 . . . . . 6 (𝜑 → ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾)
2017, 19, 199, 184, 178grpcld 18879 . . . . . 6 (𝜑 → ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) ∈ 𝐾)
2027, 19cmncom 19728 . . . . . 6 ((𝑅 ∈ CMnd ∧ ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾 ∧ ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) ∈ 𝐾) → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋)))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
20321, 200, 201, 202syl3anc 1373 . . . . 5 (𝜑 → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋)))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
204198, 203eqtrd 2764 . . . 4 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
205199grpmndd 18878 . . . . 5 (𝜑𝑅 ∈ Mnd)
206 fvexd 6873 . . . . 5 (𝜑 → (ℤ‘4) ∈ V)
20718gsumz 18763 . . . . 5 ((𝑅 ∈ Mnd ∧ (ℤ‘4) ∈ V) → (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅))) = (0g𝑅))
208205, 206, 207syl2anc 584 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅))) = (0g𝑅))
209204, 208oveq12d 7405 . . 3 (𝜑 → (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅)))) = ((((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g𝑅)))
2107, 19, 199, 201, 200grpcld 18879 . . . 4 (𝜑 → (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) ∈ 𝐾)
2117, 19, 18, 199, 210grpridd 18902 . . 3 (𝜑 → ((((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g𝑅)) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
212121, 209, 2113eqtrd 2768 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
21317, 73, 2123eqtrd 2768 1 (𝜑 → ((𝑂𝑀)‘𝑋) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cun 3912  cin 3913  wss 3914  c0 4296  {cpr 4591   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  2c2 12241  3c3 12242  4c4 12243  0cn0 12442  cz 12529  cuz 12793  ..^cfzo 13615  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  Poly1cpl1 22061  coe1cco1 22062  eval1ce1 22201  deg1cdg1 25959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-mdeg 25960  df-deg1 25961
This theorem is referenced by:  2sqr3minply  33770
  Copyright terms: Public domain W3C validator