Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1deg3 Structured version   Visualization version   GIF version

Theorem evl1deg3 33603
Description: Evaluation of a univariate polynomial of degree 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
Hypotheses
Ref Expression
evl1deg1.1 𝑃 = (Poly1𝑅)
evl1deg1.2 𝑂 = (eval1𝑅)
evl1deg1.3 𝐾 = (Base‘𝑅)
evl1deg1.4 𝑈 = (Base‘𝑃)
evl1deg1.5 · = (.r𝑅)
evl1deg1.6 + = (+g𝑅)
evl1deg2.p = (.g‘(mulGrp‘𝑅))
evl1deg3.f 𝐹 = (coe1𝑀)
evl1deg3.e 𝐸 = (deg1𝑅)
evl1deg3.a 𝐴 = (𝐹‘3)
evl1deg3.b 𝐵 = (𝐹‘2)
evl1deg3.c 𝐶 = (𝐹‘1)
evl1deg3.d 𝐷 = (𝐹‘0)
evl1deg3.r (𝜑𝑅 ∈ CRing)
evl1deg3.m (𝜑𝑀𝑈)
evl1deg3.1 (𝜑 → (𝐸𝑀) = 3)
evl1deg3.x (𝜑𝑋𝐾)
Assertion
Ref Expression
evl1deg3 (𝜑 → ((𝑂𝑀)‘𝑋) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))

Proof of Theorem evl1deg3
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . 6 (𝑥 = 𝑋 → (𝑘 𝑥) = (𝑘 𝑋))
21oveq2d 7447 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑘) · (𝑘 𝑥)) = ((𝐹𝑘) · (𝑘 𝑋)))
32mpteq2dv 5244 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))))
43oveq2d 7447 . . 3 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
5 evl1deg1.2 . . . 4 𝑂 = (eval1𝑅)
6 evl1deg1.1 . . . 4 𝑃 = (Poly1𝑅)
7 evl1deg1.3 . . . 4 𝐾 = (Base‘𝑅)
8 evl1deg1.4 . . . 4 𝑈 = (Base‘𝑃)
9 evl1deg3.r . . . 4 (𝜑𝑅 ∈ CRing)
10 evl1deg3.m . . . 4 (𝜑𝑀𝑈)
11 evl1deg1.5 . . . 4 · = (.r𝑅)
12 evl1deg2.p . . . 4 = (.g‘(mulGrp‘𝑅))
13 evl1deg3.f . . . 4 𝐹 = (coe1𝑀)
145, 6, 7, 8, 9, 10, 11, 12, 13evl1fpws 33590 . . 3 (𝜑 → (𝑂𝑀) = (𝑥𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))))))
15 evl1deg3.x . . 3 (𝜑𝑋𝐾)
16 ovexd 7466 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ V)
174, 14, 15, 16fvmptd4 7040 . 2 (𝜑 → ((𝑂𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
18 eqid 2737 . . 3 (0g𝑅) = (0g𝑅)
19 evl1deg1.6 . . 3 + = (+g𝑅)
209crngringd 20243 . . . 4 (𝜑𝑅 ∈ Ring)
2120ringcmnd 20281 . . 3 (𝜑𝑅 ∈ CMnd)
22 nn0ex 12532 . . . 4 0 ∈ V
2322a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
2420adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
2513, 8, 6, 7coe1fvalcl 22214 . . . . 5 ((𝑀𝑈𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
2610, 25sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
27 eqid 2737 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 7mgpbas 20142 . . . . 5 𝐾 = (Base‘(mulGrp‘𝑅))
2927ringmgp 20236 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3020, 29syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
3130adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑅) ∈ Mnd)
32 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3315adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑋𝐾)
3428, 12, 31, 32, 33mulgnn0cld 19113 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐾)
357, 11, 24, 26, 34ringcld 20257 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
36 fvexd 6921 . . . 4 (𝜑 → (0g𝑅) ∈ V)
37 fveq2 6906 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
38 oveq1 7438 . . . . 5 (𝑘 = 𝑗 → (𝑘 𝑋) = (𝑗 𝑋))
3937, 38oveq12d 7449 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹𝑗) · (𝑗 𝑋)))
40 breq1 5146 . . . . . . 7 (𝑖 = (𝐸𝑀) → (𝑖 < 𝑗 ↔ (𝐸𝑀) < 𝑗))
4140imbi1d 341 . . . . . 6 (𝑖 = (𝐸𝑀) → ((𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
4241ralbidv 3178 . . . . 5 (𝑖 = (𝐸𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
43 evl1deg3.1 . . . . . 6 (𝜑 → (𝐸𝑀) = 3)
44 3nn0 12544 . . . . . . 7 3 ∈ ℕ0
4544a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
4643, 45eqeltrd 2841 . . . . 5 (𝜑 → (𝐸𝑀) ∈ ℕ0)
4710ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑀𝑈)
48 simplr 769 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑗 ∈ ℕ0)
49 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐸𝑀) < 𝑗)
50 evl1deg3.e . . . . . . . . . . 11 𝐸 = (deg1𝑅)
5150, 6, 8, 18, 13deg1lt 26136 . . . . . . . . . 10 ((𝑀𝑈𝑗 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5247, 48, 49, 51syl3anc 1373 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5352oveq1d 7446 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = ((0g𝑅) · (𝑗 𝑋)))
5420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑅 ∈ Ring)
5554, 29syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd)
5615ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑋𝐾)
5728, 12, 55, 48, 56mulgnn0cld 19113 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝑗 𝑋) ∈ 𝐾)
587, 11, 18, 54, 57ringlzd 20292 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((0g𝑅) · (𝑗 𝑋)) = (0g𝑅))
5953, 58eqtrd 2777 . . . . . . 7 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))
6059ex 412 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6160ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6242, 46, 61rspcedvdw 3625 . . . 4 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6336, 35, 39, 62mptnn0fsuppd 14039 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
64 fzouzdisj 13735 . . . 4 ((0..^4) ∩ (ℤ‘4)) = ∅
6564a1i 11 . . 3 (𝜑 → ((0..^4) ∩ (ℤ‘4)) = ∅)
66 nn0uz 12920 . . . . 5 0 = (ℤ‘0)
67 4nn0 12545 . . . . . . 7 4 ∈ ℕ0
6867, 66eleqtri 2839 . . . . . 6 4 ∈ (ℤ‘0)
69 fzouzsplit 13734 . . . . . 6 (4 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^4) ∪ (ℤ‘4)))
7068, 69ax-mp 5 . . . . 5 (ℤ‘0) = ((0..^4) ∪ (ℤ‘4))
7166, 70eqtri 2765 . . . 4 0 = ((0..^4) ∪ (ℤ‘4))
7271a1i 11 . . 3 (𝜑 → ℕ0 = ((0..^4) ∪ (ℤ‘4)))
737, 18, 19, 21, 23, 35, 63, 65, 72gsumsplit2 19947 . 2 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
74 fzofi 14015 . . . . . 6 (0..^4) ∈ Fin
7574a1i 11 . . . . 5 (𝜑 → (0..^4) ∈ Fin)
76 fzo0ssnn0 13785 . . . . . . . 8 (0..^4) ⊆ ℕ0
7776a1i 11 . . . . . . 7 (𝜑 → (0..^4) ⊆ ℕ0)
7877sselda 3983 . . . . . 6 ((𝜑𝑘 ∈ (0..^4)) → 𝑘 ∈ ℕ0)
7978, 35syldan 591 . . . . 5 ((𝜑𝑘 ∈ (0..^4)) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
80 0ne2 12473 . . . . . . 7 0 ≠ 2
81 1ne2 12474 . . . . . . 7 1 ≠ 2
82 0re 11263 . . . . . . . 8 0 ∈ ℝ
83 3pos 12371 . . . . . . . 8 0 < 3
8482, 83ltneii 11374 . . . . . . 7 0 ≠ 3
85 1re 11261 . . . . . . . 8 1 ∈ ℝ
86 1lt3 12439 . . . . . . . 8 1 < 3
8785, 86ltneii 11374 . . . . . . 7 1 ≠ 3
88 disjpr2 4713 . . . . . . 7 (((0 ≠ 2 ∧ 1 ≠ 2) ∧ (0 ≠ 3 ∧ 1 ≠ 3)) → ({0, 1} ∩ {2, 3}) = ∅)
8980, 81, 84, 87, 88mp4an 693 . . . . . 6 ({0, 1} ∩ {2, 3}) = ∅
9089a1i 11 . . . . 5 (𝜑 → ({0, 1} ∩ {2, 3}) = ∅)
91 fzo0to42pr 13792 . . . . . 6 (0..^4) = ({0, 1} ∪ {2, 3})
9291a1i 11 . . . . 5 (𝜑 → (0..^4) = ({0, 1} ∪ {2, 3}))
937, 19, 21, 75, 79, 90, 92gsummptfidmsplit 19948 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
9410adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑀𝑈)
95 uzss 12901 . . . . . . . . . . . . 13 (4 ∈ (ℤ‘0) → (ℤ‘4) ⊆ (ℤ‘0))
9668, 95ax-mp 5 . . . . . . . . . . . 12 (ℤ‘4) ⊆ (ℤ‘0)
9796, 66sseqtrri 4033 . . . . . . . . . . 11 (ℤ‘4) ⊆ ℕ0
9897a1i 11 . . . . . . . . . 10 (𝜑 → (ℤ‘4) ⊆ ℕ0)
9998sselda 3983 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑘 ∈ ℕ0)
10043adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝐸𝑀) = 3)
101 3p1e4 12411 . . . . . . . . . . . . . 14 (3 + 1) = 4
102101fveq2i 6909 . . . . . . . . . . . . 13 (ℤ‘(3 + 1)) = (ℤ‘4)
103102eleq2i 2833 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(3 + 1)) ↔ 𝑘 ∈ (ℤ‘4))
104 3z 12650 . . . . . . . . . . . . 13 3 ∈ ℤ
105 eluzp1l 12905 . . . . . . . . . . . . 13 ((3 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(3 + 1))) → 3 < 𝑘)
106104, 105mpan 690 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(3 + 1)) → 3 < 𝑘)
107103, 106sylbir 235 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘4) → 3 < 𝑘)
108107adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘4)) → 3 < 𝑘)
109100, 108eqbrtrd 5165 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝐸𝑀) < 𝑘)
11050, 6, 8, 18, 13deg1lt 26136 . . . . . . . . 9 ((𝑀𝑈𝑘 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑘) → (𝐹𝑘) = (0g𝑅))
11194, 99, 109, 110syl3anc 1373 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝐹𝑘) = (0g𝑅))
112111oveq1d 7446 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘4)) → ((𝐹𝑘) · (𝑘 𝑋)) = ((0g𝑅) · (𝑘 𝑋)))
11320adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑅 ∈ Ring)
114113, 29syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → (mulGrp‘𝑅) ∈ Mnd)
11515adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑋𝐾)
11628, 12, 114, 99, 115mulgnn0cld 19113 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝑘 𝑋) ∈ 𝐾)
1177, 11, 18, 113, 116ringlzd 20292 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘4)) → ((0g𝑅) · (𝑘 𝑋)) = (0g𝑅))
118112, 117eqtrd 2777 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘4)) → ((𝐹𝑘) · (𝑘 𝑋)) = (0g𝑅))
119118mpteq2dva 5242 . . . . 5 (𝜑 → (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅)))
120119oveq2d 7447 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅))))
12193, 120oveq12d 7449 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅)))))
122 0nn0 12541 . . . . . . . . 9 0 ∈ ℕ0
123122a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
124 1nn0 12542 . . . . . . . . 9 1 ∈ ℕ0
125124a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ0)
126 0ne1 12337 . . . . . . . . 9 0 ≠ 1
127126a1i 11 . . . . . . . 8 (𝜑 → 0 ≠ 1)
12813, 8, 6, 7coe1fvalcl 22214 . . . . . . . . . 10 ((𝑀𝑈 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ 𝐾)
12910, 122, 128sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘0) ∈ 𝐾)
13028, 12, 30, 123, 15mulgnn0cld 19113 . . . . . . . . 9 (𝜑 → (0 𝑋) ∈ 𝐾)
1317, 11, 20, 129, 130ringcld 20257 . . . . . . . 8 (𝜑 → ((𝐹‘0) · (0 𝑋)) ∈ 𝐾)
13213, 8, 6, 7coe1fvalcl 22214 . . . . . . . . . 10 ((𝑀𝑈 ∧ 1 ∈ ℕ0) → (𝐹‘1) ∈ 𝐾)
13310, 124, 132sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ 𝐾)
13428, 12, 30, 125, 15mulgnn0cld 19113 . . . . . . . . 9 (𝜑 → (1 𝑋) ∈ 𝐾)
1357, 11, 20, 133, 134ringcld 20257 . . . . . . . 8 (𝜑 → ((𝐹‘1) · (1 𝑋)) ∈ 𝐾)
136 fveq2 6906 . . . . . . . . . 10 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
137 oveq1 7438 . . . . . . . . . 10 (𝑘 = 0 → (𝑘 𝑋) = (0 𝑋))
138136, 137oveq12d 7449 . . . . . . . . 9 (𝑘 = 0 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹‘0) · (0 𝑋)))
139 fveq2 6906 . . . . . . . . . 10 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
140 oveq1 7438 . . . . . . . . . 10 (𝑘 = 1 → (𝑘 𝑋) = (1 𝑋))
141139, 140oveq12d 7449 . . . . . . . . 9 (𝑘 = 1 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹‘1) · (1 𝑋)))
1427, 19, 138, 141gsumpr 19973 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1) ∧ (((𝐹‘0) · (0 𝑋)) ∈ 𝐾 ∧ ((𝐹‘1) · (1 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))))
14321, 123, 125, 127, 131, 135, 142syl132anc 1390 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))))
144 eqid 2737 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
145 evl1deg3.d . . . . . . . . . . 11 𝐷 = (𝐹‘0)
146145, 129eqeltrid 2845 . . . . . . . . . 10 (𝜑𝐷𝐾)
1477, 11, 144, 20, 146ringridmd 20270 . . . . . . . . 9 (𝜑 → (𝐷 · (1r𝑅)) = 𝐷)
148147oveq1d 7446 . . . . . . . 8 (𝜑 → ((𝐷 · (1r𝑅)) + (𝐶 · 𝑋)) = (𝐷 + (𝐶 · 𝑋)))
149145a1i 11 . . . . . . . . . 10 (𝜑𝐷 = (𝐹‘0))
15027, 144ringidval 20180 . . . . . . . . . . . . 13 (1r𝑅) = (0g‘(mulGrp‘𝑅))
15128, 150, 12mulg0 19092 . . . . . . . . . . . 12 (𝑋𝐾 → (0 𝑋) = (1r𝑅))
15215, 151syl 17 . . . . . . . . . . 11 (𝜑 → (0 𝑋) = (1r𝑅))
153152eqcomd 2743 . . . . . . . . . 10 (𝜑 → (1r𝑅) = (0 𝑋))
154149, 153oveq12d 7449 . . . . . . . . 9 (𝜑 → (𝐷 · (1r𝑅)) = ((𝐹‘0) · (0 𝑋)))
155 evl1deg3.c . . . . . . . . . . 11 𝐶 = (𝐹‘1)
156155a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝐹‘1))
15728, 12mulg1 19099 . . . . . . . . . . . 12 (𝑋𝐾 → (1 𝑋) = 𝑋)
15815, 157syl 17 . . . . . . . . . . 11 (𝜑 → (1 𝑋) = 𝑋)
159158eqcomd 2743 . . . . . . . . . 10 (𝜑𝑋 = (1 𝑋))
160156, 159oveq12d 7449 . . . . . . . . 9 (𝜑 → (𝐶 · 𝑋) = ((𝐹‘1) · (1 𝑋)))
161154, 160oveq12d 7449 . . . . . . . 8 (𝜑 → ((𝐷 · (1r𝑅)) + (𝐶 · 𝑋)) = (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))))
162160, 135eqeltrd 2841 . . . . . . . . 9 (𝜑 → (𝐶 · 𝑋) ∈ 𝐾)
1637, 19ringcom 20277 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐷𝐾 ∧ (𝐶 · 𝑋) ∈ 𝐾) → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷))
16420, 146, 162, 163syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷))
165148, 161, 1643eqtr3d 2785 . . . . . . 7 (𝜑 → (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))) = ((𝐶 · 𝑋) + 𝐷))
166143, 165eqtrd 2777 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐶 · 𝑋) + 𝐷))
167 2nn0 12543 . . . . . . . . 9 2 ∈ ℕ0
168167a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ0)
169 2re 12340 . . . . . . . . . 10 2 ∈ ℝ
170 2lt3 12438 . . . . . . . . . 10 2 < 3
171169, 170ltneii 11374 . . . . . . . . 9 2 ≠ 3
172171a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 3)
173 evl1deg3.b . . . . . . . . . 10 𝐵 = (𝐹‘2)
17413, 8, 6, 7coe1fvalcl 22214 . . . . . . . . . . 11 ((𝑀𝑈 ∧ 2 ∈ ℕ0) → (𝐹‘2) ∈ 𝐾)
17510, 167, 174sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐹‘2) ∈ 𝐾)
176173, 175eqeltrid 2845 . . . . . . . . 9 (𝜑𝐵𝐾)
17728, 12, 30, 168, 15mulgnn0cld 19113 . . . . . . . . 9 (𝜑 → (2 𝑋) ∈ 𝐾)
1787, 11, 20, 176, 177ringcld 20257 . . . . . . . 8 (𝜑 → (𝐵 · (2 𝑋)) ∈ 𝐾)
179 evl1deg3.a . . . . . . . . . 10 𝐴 = (𝐹‘3)
18013, 8, 6, 7coe1fvalcl 22214 . . . . . . . . . . 11 ((𝑀𝑈 ∧ 3 ∈ ℕ0) → (𝐹‘3) ∈ 𝐾)
18110, 44, 180sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐹‘3) ∈ 𝐾)
182179, 181eqeltrid 2845 . . . . . . . . 9 (𝜑𝐴𝐾)
18328, 12, 30, 45, 15mulgnn0cld 19113 . . . . . . . . 9 (𝜑 → (3 𝑋) ∈ 𝐾)
1847, 11, 20, 182, 183ringcld 20257 . . . . . . . 8 (𝜑 → (𝐴 · (3 𝑋)) ∈ 𝐾)
185 fveq2 6906 . . . . . . . . . . 11 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
186185, 173eqtr4di 2795 . . . . . . . . . 10 (𝑘 = 2 → (𝐹𝑘) = 𝐵)
187 oveq1 7438 . . . . . . . . . 10 (𝑘 = 2 → (𝑘 𝑋) = (2 𝑋))
188186, 187oveq12d 7449 . . . . . . . . 9 (𝑘 = 2 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐵 · (2 𝑋)))
189 fveq2 6906 . . . . . . . . . . 11 (𝑘 = 3 → (𝐹𝑘) = (𝐹‘3))
190189, 179eqtr4di 2795 . . . . . . . . . 10 (𝑘 = 3 → (𝐹𝑘) = 𝐴)
191 oveq1 7438 . . . . . . . . . 10 (𝑘 = 3 → (𝑘 𝑋) = (3 𝑋))
192190, 191oveq12d 7449 . . . . . . . . 9 (𝑘 = 3 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐴 · (3 𝑋)))
1937, 19, 188, 192gsumpr 19973 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≠ 3) ∧ ((𝐵 · (2 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))))
19421, 168, 45, 172, 178, 184, 193syl132anc 1390 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))))
1957, 19cmncom 19816 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (𝐵 · (2 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 𝑋)) ∈ 𝐾) → ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))) = ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))))
19621, 178, 184, 195syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))) = ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))))
197194, 196eqtrd 2777 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))))
198166, 197oveq12d 7449 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋)))))
1999crnggrpd 20244 . . . . . . 7 (𝜑𝑅 ∈ Grp)
2007, 19, 199, 162, 146grpcld 18965 . . . . . 6 (𝜑 → ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾)
2017, 19, 199, 184, 178grpcld 18965 . . . . . 6 (𝜑 → ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) ∈ 𝐾)
2027, 19cmncom 19816 . . . . . 6 ((𝑅 ∈ CMnd ∧ ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾 ∧ ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) ∈ 𝐾) → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋)))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
20321, 200, 201, 202syl3anc 1373 . . . . 5 (𝜑 → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋)))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
204198, 203eqtrd 2777 . . . 4 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
205199grpmndd 18964 . . . . 5 (𝜑𝑅 ∈ Mnd)
206 fvexd 6921 . . . . 5 (𝜑 → (ℤ‘4) ∈ V)
20718gsumz 18849 . . . . 5 ((𝑅 ∈ Mnd ∧ (ℤ‘4) ∈ V) → (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅))) = (0g𝑅))
208205, 206, 207syl2anc 584 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅))) = (0g𝑅))
209204, 208oveq12d 7449 . . 3 (𝜑 → (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅)))) = ((((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g𝑅)))
2107, 19, 199, 201, 200grpcld 18965 . . . 4 (𝜑 → (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) ∈ 𝐾)
2117, 19, 18, 199, 210grpridd 18988 . . 3 (𝜑 → ((((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g𝑅)) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
212121, 209, 2113eqtrd 2781 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
21317, 73, 2123eqtrd 2781 1 (𝜑 → ((𝑂𝑀)‘𝑋) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cun 3949  cin 3950  wss 3951  c0 4333  {cpr 4628   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  Fincfn 8985  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  2c2 12321  3c3 12322  4c4 12323  0cn0 12526  cz 12613  cuz 12878  ..^cfzo 13694  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  .gcmg 19085  CMndccmn 19798  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  Poly1cpl1 22178  coe1cco1 22179  eval1ce1 22318  deg1cdg1 26093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-cnfld 21365  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evls1 22319  df-evl1 22320  df-mdeg 26094  df-deg1 26095
This theorem is referenced by:  2sqr3minply  33791
  Copyright terms: Public domain W3C validator