| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑘 ↑ 𝑥) = (𝑘 ↑ 𝑋)) |
| 2 | 1 | oveq2d 7447 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑥)) = ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))) |
| 3 | 2 | mpteq2dv 5244 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) |
| 4 | 3 | oveq2d 7447 |
. . 3
⊢ (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) |
| 5 | | evl1deg1.2 |
. . . 4
⊢ 𝑂 = (eval1‘𝑅) |
| 6 | | evl1deg1.1 |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 7 | | evl1deg1.3 |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
| 8 | | evl1deg1.4 |
. . . 4
⊢ 𝑈 = (Base‘𝑃) |
| 9 | | evl1deg3.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 10 | | evl1deg3.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑈) |
| 11 | | evl1deg1.5 |
. . . 4
⊢ · =
(.r‘𝑅) |
| 12 | | evl1deg2.p |
. . . 4
⊢ ↑ =
(.g‘(mulGrp‘𝑅)) |
| 13 | | evl1deg3.f |
. . . 4
⊢ 𝐹 = (coe1‘𝑀) |
| 14 | 5, 6, 7, 8, 9, 10,
11, 12, 13 | evl1fpws 33590 |
. . 3
⊢ (𝜑 → (𝑂‘𝑀) = (𝑥 ∈ 𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑥)))))) |
| 15 | | evl1deg3.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| 16 | | ovexd 7466 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) ∈ V) |
| 17 | 4, 14, 15, 16 | fvmptd4 7040 |
. 2
⊢ (𝜑 → ((𝑂‘𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) |
| 18 | | eqid 2737 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 19 | | evl1deg1.6 |
. . 3
⊢ + =
(+g‘𝑅) |
| 20 | 9 | crngringd 20243 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 21 | 20 | ringcmnd 20281 |
. . 3
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 22 | | nn0ex 12532 |
. . . 4
⊢
ℕ0 ∈ V |
| 23 | 22 | a1i 11 |
. . 3
⊢ (𝜑 → ℕ0 ∈
V) |
| 24 | 20 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 25 | 13, 8, 6, 7 | coe1fvalcl 22214 |
. . . . 5
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝐾) |
| 26 | 10, 25 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝐾) |
| 27 | | eqid 2737 |
. . . . . 6
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 28 | 27, 7 | mgpbas 20142 |
. . . . 5
⊢ 𝐾 =
(Base‘(mulGrp‘𝑅)) |
| 29 | 27 | ringmgp 20236 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
| 30 | 20, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 31 | 30 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(mulGrp‘𝑅) ∈
Mnd) |
| 32 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 33 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ 𝐾) |
| 34 | 28, 12, 31, 32, 33 | mulgnn0cld 19113 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐾) |
| 35 | 7, 11, 24, 26, 34 | ringcld 20257 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐾) |
| 36 | | fvexd 6921 |
. . . 4
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
| 37 | | fveq2 6906 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
| 38 | | oveq1 7438 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝑘 ↑ 𝑋) = (𝑗 ↑ 𝑋)) |
| 39 | 37, 38 | oveq12d 7449 |
. . . 4
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = ((𝐹‘𝑗) · (𝑗 ↑ 𝑋))) |
| 40 | | breq1 5146 |
. . . . . . 7
⊢ (𝑖 = (𝐸‘𝑀) → (𝑖 < 𝑗 ↔ (𝐸‘𝑀) < 𝑗)) |
| 41 | 40 | imbi1d 341 |
. . . . . 6
⊢ (𝑖 = (𝐸‘𝑀) → ((𝑖 < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)) ↔ ((𝐸‘𝑀) < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)))) |
| 42 | 41 | ralbidv 3178 |
. . . . 5
⊢ (𝑖 = (𝐸‘𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐸‘𝑀) < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)))) |
| 43 | | evl1deg3.1 |
. . . . . 6
⊢ (𝜑 → (𝐸‘𝑀) = 3) |
| 44 | | 3nn0 12544 |
. . . . . . 7
⊢ 3 ∈
ℕ0 |
| 45 | 44 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 3 ∈
ℕ0) |
| 46 | 43, 45 | eqeltrd 2841 |
. . . . 5
⊢ (𝜑 → (𝐸‘𝑀) ∈
ℕ0) |
| 47 | 10 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → 𝑀 ∈ 𝑈) |
| 48 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → 𝑗 ∈ ℕ0) |
| 49 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → (𝐸‘𝑀) < 𝑗) |
| 50 | | evl1deg3.e |
. . . . . . . . . . 11
⊢ 𝐸 = (deg1‘𝑅) |
| 51 | 50, 6, 8, 18, 13 | deg1lt 26136 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑗 ∈ ℕ0 ∧ (𝐸‘𝑀) < 𝑗) → (𝐹‘𝑗) = (0g‘𝑅)) |
| 52 | 47, 48, 49, 51 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → (𝐹‘𝑗) = (0g‘𝑅)) |
| 53 | 52 | oveq1d 7446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = ((0g‘𝑅) · (𝑗 ↑ 𝑋))) |
| 54 | 20 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → 𝑅 ∈ Ring) |
| 55 | 54, 29 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd) |
| 56 | 15 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → 𝑋 ∈ 𝐾) |
| 57 | 28, 12, 55, 48, 56 | mulgnn0cld 19113 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → (𝑗 ↑ 𝑋) ∈ 𝐾) |
| 58 | 7, 11, 18, 54, 57 | ringlzd 20292 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → ((0g‘𝑅) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)) |
| 59 | 53, 58 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)) |
| 60 | 59 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐸‘𝑀) < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅))) |
| 61 | 60 | ralrimiva 3146 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐸‘𝑀) < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅))) |
| 62 | 42, 46, 61 | rspcedvdw 3625 |
. . . 4
⊢ (𝜑 → ∃𝑖 ∈ ℕ0 ∀𝑗 ∈ ℕ0
(𝑖 < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅))) |
| 63 | 36, 35, 39, 62 | mptnn0fsuppd 14039 |
. . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑅)) |
| 64 | | fzouzdisj 13735 |
. . . 4
⊢ ((0..^4)
∩ (ℤ≥‘4)) = ∅ |
| 65 | 64 | a1i 11 |
. . 3
⊢ (𝜑 → ((0..^4) ∩
(ℤ≥‘4)) = ∅) |
| 66 | | nn0uz 12920 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
| 67 | | 4nn0 12545 |
. . . . . . 7
⊢ 4 ∈
ℕ0 |
| 68 | 67, 66 | eleqtri 2839 |
. . . . . 6
⊢ 4 ∈
(ℤ≥‘0) |
| 69 | | fzouzsplit 13734 |
. . . . . 6
⊢ (4 ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0..^4) ∪ (ℤ≥‘4))) |
| 70 | 68, 69 | ax-mp 5 |
. . . . 5
⊢
(ℤ≥‘0) = ((0..^4) ∪
(ℤ≥‘4)) |
| 71 | 66, 70 | eqtri 2765 |
. . . 4
⊢
ℕ0 = ((0..^4) ∪
(ℤ≥‘4)) |
| 72 | 71 | a1i 11 |
. . 3
⊢ (𝜑 → ℕ0 =
((0..^4) ∪ (ℤ≥‘4))) |
| 73 | 7, 18, 19, 21, 23, 35, 63, 65, 72 | gsumsplit2 19947 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))))) |
| 74 | | fzofi 14015 |
. . . . . 6
⊢ (0..^4)
∈ Fin |
| 75 | 74 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0..^4) ∈
Fin) |
| 76 | | fzo0ssnn0 13785 |
. . . . . . . 8
⊢ (0..^4)
⊆ ℕ0 |
| 77 | 76 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (0..^4) ⊆
ℕ0) |
| 78 | 77 | sselda 3983 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^4)) → 𝑘 ∈ ℕ0) |
| 79 | 78, 35 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^4)) → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐾) |
| 80 | | 0ne2 12473 |
. . . . . . 7
⊢ 0 ≠
2 |
| 81 | | 1ne2 12474 |
. . . . . . 7
⊢ 1 ≠
2 |
| 82 | | 0re 11263 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
| 83 | | 3pos 12371 |
. . . . . . . 8
⊢ 0 <
3 |
| 84 | 82, 83 | ltneii 11374 |
. . . . . . 7
⊢ 0 ≠
3 |
| 85 | | 1re 11261 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
| 86 | | 1lt3 12439 |
. . . . . . . 8
⊢ 1 <
3 |
| 87 | 85, 86 | ltneii 11374 |
. . . . . . 7
⊢ 1 ≠
3 |
| 88 | | disjpr2 4713 |
. . . . . . 7
⊢ (((0 ≠
2 ∧ 1 ≠ 2) ∧ (0 ≠ 3 ∧ 1 ≠ 3)) → ({0, 1} ∩ {2, 3})
= ∅) |
| 89 | 80, 81, 84, 87, 88 | mp4an 693 |
. . . . . 6
⊢ ({0, 1}
∩ {2, 3}) = ∅ |
| 90 | 89 | a1i 11 |
. . . . 5
⊢ (𝜑 → ({0, 1} ∩ {2, 3}) =
∅) |
| 91 | | fzo0to42pr 13792 |
. . . . . 6
⊢ (0..^4) =
({0, 1} ∪ {2, 3}) |
| 92 | 91 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0..^4) = ({0, 1} ∪
{2, 3})) |
| 93 | 7, 19, 21, 75, 79, 90, 92 | gsummptfidmsplit 19948 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))))) |
| 94 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 𝑀 ∈ 𝑈) |
| 95 | | uzss 12901 |
. . . . . . . . . . . . 13
⊢ (4 ∈
(ℤ≥‘0) → (ℤ≥‘4)
⊆ (ℤ≥‘0)) |
| 96 | 68, 95 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘4) ⊆
(ℤ≥‘0) |
| 97 | 96, 66 | sseqtrri 4033 |
. . . . . . . . . . 11
⊢
(ℤ≥‘4) ⊆
ℕ0 |
| 98 | 97 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 →
(ℤ≥‘4) ⊆ ℕ0) |
| 99 | 98 | sselda 3983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 𝑘 ∈
ℕ0) |
| 100 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (𝐸‘𝑀) = 3) |
| 101 | | 3p1e4 12411 |
. . . . . . . . . . . . . 14
⊢ (3 + 1) =
4 |
| 102 | 101 | fveq2i 6909 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘(3 + 1)) =
(ℤ≥‘4) |
| 103 | 102 | eleq2i 2833 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘(3 + 1)) ↔ 𝑘 ∈
(ℤ≥‘4)) |
| 104 | | 3z 12650 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℤ |
| 105 | | eluzp1l 12905 |
. . . . . . . . . . . . 13
⊢ ((3
∈ ℤ ∧ 𝑘
∈ (ℤ≥‘(3 + 1))) → 3 < 𝑘) |
| 106 | 104, 105 | mpan 690 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘(3 + 1)) → 3 < 𝑘) |
| 107 | 103, 106 | sylbir 235 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘4) → 3 < 𝑘) |
| 108 | 107 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 3 < 𝑘) |
| 109 | 100, 108 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (𝐸‘𝑀) < 𝑘) |
| 110 | 50, 6, 8, 18, 13 | deg1lt 26136 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ∧ (𝐸‘𝑀) < 𝑘) → (𝐹‘𝑘) = (0g‘𝑅)) |
| 111 | 94, 99, 109, 110 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (𝐹‘𝑘) = (0g‘𝑅)) |
| 112 | 111 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = ((0g‘𝑅) · (𝑘 ↑ 𝑋))) |
| 113 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 𝑅 ∈
Ring) |
| 114 | 113, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (mulGrp‘𝑅)
∈ Mnd) |
| 115 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 𝑋 ∈ 𝐾) |
| 116 | 28, 12, 114, 99, 115 | mulgnn0cld 19113 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (𝑘 ↑ 𝑋) ∈ 𝐾) |
| 117 | 7, 11, 18, 113, 116 | ringlzd 20292 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ ((0g‘𝑅) · (𝑘 ↑ 𝑋)) = (0g‘𝑅)) |
| 118 | 112, 117 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = (0g‘𝑅)) |
| 119 | 118 | mpteq2dva 5242 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘4)
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))) = (𝑘 ∈ (ℤ≥‘4)
↦ (0g‘𝑅))) |
| 120 | 119 | oveq2d 7447 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅)))) |
| 121 | 93, 120 | oveq12d 7449 |
. . 3
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) = (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅))))) |
| 122 | | 0nn0 12541 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
| 123 | 122 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℕ0) |
| 124 | | 1nn0 12542 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
| 125 | 124 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℕ0) |
| 126 | | 0ne1 12337 |
. . . . . . . . 9
⊢ 0 ≠
1 |
| 127 | 126 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ≠ 1) |
| 128 | 13, 8, 6, 7 | coe1fvalcl 22214 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑈 ∧ 0 ∈ ℕ0) →
(𝐹‘0) ∈ 𝐾) |
| 129 | 10, 122, 128 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘0) ∈ 𝐾) |
| 130 | 28, 12, 30, 123, 15 | mulgnn0cld 19113 |
. . . . . . . . 9
⊢ (𝜑 → (0 ↑ 𝑋) ∈ 𝐾) |
| 131 | 7, 11, 20, 129, 130 | ringcld 20257 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘0) · (0 ↑ 𝑋)) ∈ 𝐾) |
| 132 | 13, 8, 6, 7 | coe1fvalcl 22214 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑈 ∧ 1 ∈ ℕ0) →
(𝐹‘1) ∈ 𝐾) |
| 133 | 10, 124, 132 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘1) ∈ 𝐾) |
| 134 | 28, 12, 30, 125, 15 | mulgnn0cld 19113 |
. . . . . . . . 9
⊢ (𝜑 → (1 ↑ 𝑋) ∈ 𝐾) |
| 135 | 7, 11, 20, 133, 134 | ringcld 20257 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘1) · (1 ↑ 𝑋)) ∈ 𝐾) |
| 136 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) |
| 137 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (𝑘 ↑ 𝑋) = (0 ↑ 𝑋)) |
| 138 | 136, 137 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑘 = 0 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = ((𝐹‘0) · (0 ↑ 𝑋))) |
| 139 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) |
| 140 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → (𝑘 ↑ 𝑋) = (1 ↑ 𝑋)) |
| 141 | 139, 140 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑘 = 1 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = ((𝐹‘1) · (1 ↑ 𝑋))) |
| 142 | 7, 19, 138, 141 | gsumpr 19973 |
. . . . . . . 8
⊢ ((𝑅 ∈ CMnd ∧ (0 ∈
ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1) ∧
(((𝐹‘0) · (0
↑
𝑋)) ∈ 𝐾 ∧ ((𝐹‘1) · (1 ↑ 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = (((𝐹‘0) · (0 ↑ 𝑋)) + ((𝐹‘1) · (1 ↑ 𝑋)))) |
| 143 | 21, 123, 125, 127, 131, 135, 142 | syl132anc 1390 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = (((𝐹‘0) · (0 ↑ 𝑋)) + ((𝐹‘1) · (1 ↑ 𝑋)))) |
| 144 | | eqid 2737 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 145 | | evl1deg3.d |
. . . . . . . . . . 11
⊢ 𝐷 = (𝐹‘0) |
| 146 | 145, 129 | eqeltrid 2845 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝐾) |
| 147 | 7, 11, 144, 20, 146 | ringridmd 20270 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ·
(1r‘𝑅)) =
𝐷) |
| 148 | 147 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷 ·
(1r‘𝑅))
+ (𝐶 · 𝑋)) = (𝐷 + (𝐶 · 𝑋))) |
| 149 | 145 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 = (𝐹‘0)) |
| 150 | 27, 144 | ringidval 20180 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 151 | 28, 150, 12 | mulg0 19092 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐾 → (0 ↑ 𝑋) = (1r‘𝑅)) |
| 152 | 15, 151 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑅)) |
| 153 | 152 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝑅) = (0 ↑ 𝑋)) |
| 154 | 149, 153 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ·
(1r‘𝑅)) =
((𝐹‘0) · (0
↑
𝑋))) |
| 155 | | evl1deg3.c |
. . . . . . . . . . 11
⊢ 𝐶 = (𝐹‘1) |
| 156 | 155 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 = (𝐹‘1)) |
| 157 | 28, 12 | mulg1 19099 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐾 → (1 ↑ 𝑋) = 𝑋) |
| 158 | 15, 157 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ↑ 𝑋) = 𝑋) |
| 159 | 158 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = (1 ↑ 𝑋)) |
| 160 | 156, 159 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 · 𝑋) = ((𝐹‘1) · (1 ↑ 𝑋))) |
| 161 | 154, 160 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷 ·
(1r‘𝑅))
+ (𝐶 · 𝑋)) = (((𝐹‘0) · (0 ↑ 𝑋)) + ((𝐹‘1) · (1 ↑ 𝑋)))) |
| 162 | 160, 135 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 · 𝑋) ∈ 𝐾) |
| 163 | 7, 19 | ringcom 20277 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐷 ∈ 𝐾 ∧ (𝐶 · 𝑋) ∈ 𝐾) → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷)) |
| 164 | 20, 146, 162, 163 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷)) |
| 165 | 148, 161,
164 | 3eqtr3d 2785 |
. . . . . . 7
⊢ (𝜑 → (((𝐹‘0) · (0 ↑ 𝑋)) + ((𝐹‘1) · (1 ↑ 𝑋))) = ((𝐶 · 𝑋) + 𝐷)) |
| 166 | 143, 165 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝐶 · 𝑋) + 𝐷)) |
| 167 | | 2nn0 12543 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
| 168 | 167 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℕ0) |
| 169 | | 2re 12340 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 170 | | 2lt3 12438 |
. . . . . . . . . 10
⊢ 2 <
3 |
| 171 | 169, 170 | ltneii 11374 |
. . . . . . . . 9
⊢ 2 ≠
3 |
| 172 | 171 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ≠ 3) |
| 173 | | evl1deg3.b |
. . . . . . . . . 10
⊢ 𝐵 = (𝐹‘2) |
| 174 | 13, 8, 6, 7 | coe1fvalcl 22214 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑈 ∧ 2 ∈ ℕ0) →
(𝐹‘2) ∈ 𝐾) |
| 175 | 10, 167, 174 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘2) ∈ 𝐾) |
| 176 | 173, 175 | eqeltrid 2845 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| 177 | 28, 12, 30, 168, 15 | mulgnn0cld 19113 |
. . . . . . . . 9
⊢ (𝜑 → (2 ↑ 𝑋) ∈ 𝐾) |
| 178 | 7, 11, 20, 176, 177 | ringcld 20257 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · (2 ↑ 𝑋)) ∈ 𝐾) |
| 179 | | evl1deg3.a |
. . . . . . . . . 10
⊢ 𝐴 = (𝐹‘3) |
| 180 | 13, 8, 6, 7 | coe1fvalcl 22214 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑈 ∧ 3 ∈ ℕ0) →
(𝐹‘3) ∈ 𝐾) |
| 181 | 10, 44, 180 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘3) ∈ 𝐾) |
| 182 | 179, 181 | eqeltrid 2845 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| 183 | 28, 12, 30, 45, 15 | mulgnn0cld 19113 |
. . . . . . . . 9
⊢ (𝜑 → (3 ↑ 𝑋) ∈ 𝐾) |
| 184 | 7, 11, 20, 182, 183 | ringcld 20257 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 · (3 ↑ 𝑋)) ∈ 𝐾) |
| 185 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑘 = 2 → (𝐹‘𝑘) = (𝐹‘2)) |
| 186 | 185, 173 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (𝑘 = 2 → (𝐹‘𝑘) = 𝐵) |
| 187 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑘 = 2 → (𝑘 ↑ 𝑋) = (2 ↑ 𝑋)) |
| 188 | 186, 187 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑘 = 2 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = (𝐵 · (2 ↑ 𝑋))) |
| 189 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑘 = 3 → (𝐹‘𝑘) = (𝐹‘3)) |
| 190 | 189, 179 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (𝑘 = 3 → (𝐹‘𝑘) = 𝐴) |
| 191 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑘 = 3 → (𝑘 ↑ 𝑋) = (3 ↑ 𝑋)) |
| 192 | 190, 191 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑘 = 3 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = (𝐴 · (3 ↑ 𝑋))) |
| 193 | 7, 19, 188, 192 | gsumpr 19973 |
. . . . . . . 8
⊢ ((𝑅 ∈ CMnd ∧ (2 ∈
ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≠ 3) ∧
((𝐵 · (2 ↑ 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 ↑ 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝐵 · (2 ↑ 𝑋)) + (𝐴 · (3 ↑ 𝑋)))) |
| 194 | 21, 168, 45, 172, 178, 184, 193 | syl132anc 1390 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝐵 · (2 ↑ 𝑋)) + (𝐴 · (3 ↑ 𝑋)))) |
| 195 | 7, 19 | cmncom 19816 |
. . . . . . . 8
⊢ ((𝑅 ∈ CMnd ∧ (𝐵 · (2 ↑ 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 ↑ 𝑋)) ∈ 𝐾) → ((𝐵 · (2 ↑ 𝑋)) + (𝐴 · (3 ↑ 𝑋))) = ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) |
| 196 | 21, 178, 184, 195 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 · (2 ↑ 𝑋)) + (𝐴 · (3 ↑ 𝑋))) = ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) |
| 197 | 194, 196 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) |
| 198 | 166, 197 | oveq12d 7449 |
. . . . 5
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) = (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))))) |
| 199 | 9 | crnggrpd 20244 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 200 | 7, 19, 199, 162, 146 | grpcld 18965 |
. . . . . 6
⊢ (𝜑 → ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾) |
| 201 | 7, 19, 199, 184, 178 | grpcld 18965 |
. . . . . 6
⊢ (𝜑 → ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) ∈ 𝐾) |
| 202 | 7, 19 | cmncom 19816 |
. . . . . 6
⊢ ((𝑅 ∈ CMnd ∧ ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾 ∧ ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) ∈ 𝐾) → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
| 203 | 21, 200, 201, 202 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
| 204 | 198, 203 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
| 205 | 199 | grpmndd 18964 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 206 | | fvexd 6921 |
. . . . 5
⊢ (𝜑 →
(ℤ≥‘4) ∈ V) |
| 207 | 18 | gsumz 18849 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧
(ℤ≥‘4) ∈ V) → (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅))) = (0g‘𝑅)) |
| 208 | 205, 206,
207 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅))) = (0g‘𝑅)) |
| 209 | 204, 208 | oveq12d 7449 |
. . 3
⊢ (𝜑 → (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅)))) = ((((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g‘𝑅))) |
| 210 | 7, 19, 199, 201, 200 | grpcld 18965 |
. . . 4
⊢ (𝜑 → (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) ∈ 𝐾) |
| 211 | 7, 19, 18, 199, 210 | grpridd 18988 |
. . 3
⊢ (𝜑 → ((((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g‘𝑅)) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
| 212 | 121, 209,
211 | 3eqtrd 2781 |
. 2
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
| 213 | 17, 73, 212 | 3eqtrd 2781 |
1
⊢ (𝜑 → ((𝑂‘𝑀)‘𝑋) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |