Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1deg3 Structured version   Visualization version   GIF version

Theorem evl1deg3 33596
Description: Evaluation of a univariate polynomial of degree 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
Hypotheses
Ref Expression
evl1deg1.1 𝑃 = (Poly1𝑅)
evl1deg1.2 𝑂 = (eval1𝑅)
evl1deg1.3 𝐾 = (Base‘𝑅)
evl1deg1.4 𝑈 = (Base‘𝑃)
evl1deg1.5 · = (.r𝑅)
evl1deg1.6 + = (+g𝑅)
evl1deg2.p = (.g‘(mulGrp‘𝑅))
evl1deg3.f 𝐹 = (coe1𝑀)
evl1deg3.e 𝐸 = (deg1𝑅)
evl1deg3.a 𝐴 = (𝐹‘3)
evl1deg3.b 𝐵 = (𝐹‘2)
evl1deg3.c 𝐶 = (𝐹‘1)
evl1deg3.d 𝐷 = (𝐹‘0)
evl1deg3.r (𝜑𝑅 ∈ CRing)
evl1deg3.m (𝜑𝑀𝑈)
evl1deg3.1 (𝜑 → (𝐸𝑀) = 3)
evl1deg3.x (𝜑𝑋𝐾)
Assertion
Ref Expression
evl1deg3 (𝜑 → ((𝑂𝑀)‘𝑋) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))

Proof of Theorem evl1deg3
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . . . . 6 (𝑥 = 𝑋 → (𝑘 𝑥) = (𝑘 𝑋))
21oveq2d 7426 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑘) · (𝑘 𝑥)) = ((𝐹𝑘) · (𝑘 𝑋)))
32mpteq2dv 5220 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))))
43oveq2d 7426 . . 3 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
5 evl1deg1.2 . . . 4 𝑂 = (eval1𝑅)
6 evl1deg1.1 . . . 4 𝑃 = (Poly1𝑅)
7 evl1deg1.3 . . . 4 𝐾 = (Base‘𝑅)
8 evl1deg1.4 . . . 4 𝑈 = (Base‘𝑃)
9 evl1deg3.r . . . 4 (𝜑𝑅 ∈ CRing)
10 evl1deg3.m . . . 4 (𝜑𝑀𝑈)
11 evl1deg1.5 . . . 4 · = (.r𝑅)
12 evl1deg2.p . . . 4 = (.g‘(mulGrp‘𝑅))
13 evl1deg3.f . . . 4 𝐹 = (coe1𝑀)
145, 6, 7, 8, 9, 10, 11, 12, 13evl1fpws 33582 . . 3 (𝜑 → (𝑂𝑀) = (𝑥𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑥))))))
15 evl1deg3.x . . 3 (𝜑𝑋𝐾)
16 ovexd 7445 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) ∈ V)
174, 14, 15, 16fvmptd4 7015 . 2 (𝜑 → ((𝑂𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))))
18 eqid 2736 . . 3 (0g𝑅) = (0g𝑅)
19 evl1deg1.6 . . 3 + = (+g𝑅)
209crngringd 20211 . . . 4 (𝜑𝑅 ∈ Ring)
2120ringcmnd 20249 . . 3 (𝜑𝑅 ∈ CMnd)
22 nn0ex 12512 . . . 4 0 ∈ V
2322a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
2420adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
2513, 8, 6, 7coe1fvalcl 22153 . . . . 5 ((𝑀𝑈𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
2610, 25sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐾)
27 eqid 2736 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 7mgpbas 20110 . . . . 5 𝐾 = (Base‘(mulGrp‘𝑅))
2927ringmgp 20204 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3020, 29syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
3130adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑅) ∈ Mnd)
32 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3315adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑋𝐾)
3428, 12, 31, 32, 33mulgnn0cld 19083 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐾)
357, 11, 24, 26, 34ringcld 20225 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
36 fvexd 6896 . . . 4 (𝜑 → (0g𝑅) ∈ V)
37 fveq2 6881 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
38 oveq1 7417 . . . . 5 (𝑘 = 𝑗 → (𝑘 𝑋) = (𝑗 𝑋))
3937, 38oveq12d 7428 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹𝑗) · (𝑗 𝑋)))
40 breq1 5127 . . . . . . 7 (𝑖 = (𝐸𝑀) → (𝑖 < 𝑗 ↔ (𝐸𝑀) < 𝑗))
4140imbi1d 341 . . . . . 6 (𝑖 = (𝐸𝑀) → ((𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
4241ralbidv 3164 . . . . 5 (𝑖 = (𝐸𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))))
43 evl1deg3.1 . . . . . 6 (𝜑 → (𝐸𝑀) = 3)
44 3nn0 12524 . . . . . . 7 3 ∈ ℕ0
4544a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
4643, 45eqeltrd 2835 . . . . 5 (𝜑 → (𝐸𝑀) ∈ ℕ0)
4710ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑀𝑈)
48 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑗 ∈ ℕ0)
49 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐸𝑀) < 𝑗)
50 evl1deg3.e . . . . . . . . . . 11 𝐸 = (deg1𝑅)
5150, 6, 8, 18, 13deg1lt 26059 . . . . . . . . . 10 ((𝑀𝑈𝑗 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5247, 48, 49, 51syl3anc 1373 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝐹𝑗) = (0g𝑅))
5352oveq1d 7425 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = ((0g𝑅) · (𝑗 𝑋)))
5420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑅 ∈ Ring)
5554, 29syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd)
5615ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → 𝑋𝐾)
5728, 12, 55, 48, 56mulgnn0cld 19083 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → (𝑗 𝑋) ∈ 𝐾)
587, 11, 18, 54, 57ringlzd 20260 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((0g𝑅) · (𝑗 𝑋)) = (0g𝑅))
5953, 58eqtrd 2771 . . . . . . 7 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐸𝑀) < 𝑗) → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅))
6059ex 412 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6160ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐸𝑀) < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6242, 46, 61rspcedvdw 3609 . . . 4 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹𝑗) · (𝑗 𝑋)) = (0g𝑅)))
6336, 35, 39, 62mptnn0fsuppd 14021 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋))) finSupp (0g𝑅))
64 fzouzdisj 13717 . . . 4 ((0..^4) ∩ (ℤ‘4)) = ∅
6564a1i 11 . . 3 (𝜑 → ((0..^4) ∩ (ℤ‘4)) = ∅)
66 nn0uz 12899 . . . . 5 0 = (ℤ‘0)
67 4nn0 12525 . . . . . . 7 4 ∈ ℕ0
6867, 66eleqtri 2833 . . . . . 6 4 ∈ (ℤ‘0)
69 fzouzsplit 13716 . . . . . 6 (4 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^4) ∪ (ℤ‘4)))
7068, 69ax-mp 5 . . . . 5 (ℤ‘0) = ((0..^4) ∪ (ℤ‘4))
7166, 70eqtri 2759 . . . 4 0 = ((0..^4) ∪ (ℤ‘4))
7271a1i 11 . . 3 (𝜑 → ℕ0 = ((0..^4) ∪ (ℤ‘4)))
737, 18, 19, 21, 23, 35, 63, 65, 72gsumsplit2 19915 . 2 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
74 fzofi 13997 . . . . . 6 (0..^4) ∈ Fin
7574a1i 11 . . . . 5 (𝜑 → (0..^4) ∈ Fin)
76 fzo0ssnn0 13767 . . . . . . . 8 (0..^4) ⊆ ℕ0
7776a1i 11 . . . . . . 7 (𝜑 → (0..^4) ⊆ ℕ0)
7877sselda 3963 . . . . . 6 ((𝜑𝑘 ∈ (0..^4)) → 𝑘 ∈ ℕ0)
7978, 35syldan 591 . . . . 5 ((𝜑𝑘 ∈ (0..^4)) → ((𝐹𝑘) · (𝑘 𝑋)) ∈ 𝐾)
80 0ne2 12452 . . . . . . 7 0 ≠ 2
81 1ne2 12453 . . . . . . 7 1 ≠ 2
82 0re 11242 . . . . . . . 8 0 ∈ ℝ
83 3pos 12350 . . . . . . . 8 0 < 3
8482, 83ltneii 11353 . . . . . . 7 0 ≠ 3
85 1re 11240 . . . . . . . 8 1 ∈ ℝ
86 1lt3 12418 . . . . . . . 8 1 < 3
8785, 86ltneii 11353 . . . . . . 7 1 ≠ 3
88 disjpr2 4694 . . . . . . 7 (((0 ≠ 2 ∧ 1 ≠ 2) ∧ (0 ≠ 3 ∧ 1 ≠ 3)) → ({0, 1} ∩ {2, 3}) = ∅)
8980, 81, 84, 87, 88mp4an 693 . . . . . 6 ({0, 1} ∩ {2, 3}) = ∅
9089a1i 11 . . . . 5 (𝜑 → ({0, 1} ∩ {2, 3}) = ∅)
91 fzo0to42pr 13774 . . . . . 6 (0..^4) = ({0, 1} ∪ {2, 3})
9291a1i 11 . . . . 5 (𝜑 → (0..^4) = ({0, 1} ∪ {2, 3}))
937, 19, 21, 75, 79, 90, 92gsummptfidmsplit 19916 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))))
9410adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑀𝑈)
95 uzss 12880 . . . . . . . . . . . . 13 (4 ∈ (ℤ‘0) → (ℤ‘4) ⊆ (ℤ‘0))
9668, 95ax-mp 5 . . . . . . . . . . . 12 (ℤ‘4) ⊆ (ℤ‘0)
9796, 66sseqtrri 4013 . . . . . . . . . . 11 (ℤ‘4) ⊆ ℕ0
9897a1i 11 . . . . . . . . . 10 (𝜑 → (ℤ‘4) ⊆ ℕ0)
9998sselda 3963 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑘 ∈ ℕ0)
10043adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝐸𝑀) = 3)
101 3p1e4 12390 . . . . . . . . . . . . . 14 (3 + 1) = 4
102101fveq2i 6884 . . . . . . . . . . . . 13 (ℤ‘(3 + 1)) = (ℤ‘4)
103102eleq2i 2827 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(3 + 1)) ↔ 𝑘 ∈ (ℤ‘4))
104 3z 12630 . . . . . . . . . . . . 13 3 ∈ ℤ
105 eluzp1l 12884 . . . . . . . . . . . . 13 ((3 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(3 + 1))) → 3 < 𝑘)
106104, 105mpan 690 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(3 + 1)) → 3 < 𝑘)
107103, 106sylbir 235 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘4) → 3 < 𝑘)
108107adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘4)) → 3 < 𝑘)
109100, 108eqbrtrd 5146 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝐸𝑀) < 𝑘)
11050, 6, 8, 18, 13deg1lt 26059 . . . . . . . . 9 ((𝑀𝑈𝑘 ∈ ℕ0 ∧ (𝐸𝑀) < 𝑘) → (𝐹𝑘) = (0g𝑅))
11194, 99, 109, 110syl3anc 1373 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝐹𝑘) = (0g𝑅))
112111oveq1d 7425 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘4)) → ((𝐹𝑘) · (𝑘 𝑋)) = ((0g𝑅) · (𝑘 𝑋)))
11320adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑅 ∈ Ring)
114113, 29syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → (mulGrp‘𝑅) ∈ Mnd)
11515adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘4)) → 𝑋𝐾)
11628, 12, 114, 99, 115mulgnn0cld 19083 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘4)) → (𝑘 𝑋) ∈ 𝐾)
1177, 11, 18, 113, 116ringlzd 20260 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘4)) → ((0g𝑅) · (𝑘 𝑋)) = (0g𝑅))
118112, 117eqtrd 2771 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘4)) → ((𝐹𝑘) · (𝑘 𝑋)) = (0g𝑅))
119118mpteq2dva 5219 . . . . 5 (𝜑 → (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))) = (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅)))
120119oveq2d 7426 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅))))
12193, 120oveq12d 7428 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅)))))
122 0nn0 12521 . . . . . . . . 9 0 ∈ ℕ0
123122a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
124 1nn0 12522 . . . . . . . . 9 1 ∈ ℕ0
125124a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ0)
126 0ne1 12316 . . . . . . . . 9 0 ≠ 1
127126a1i 11 . . . . . . . 8 (𝜑 → 0 ≠ 1)
12813, 8, 6, 7coe1fvalcl 22153 . . . . . . . . . 10 ((𝑀𝑈 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ 𝐾)
12910, 122, 128sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘0) ∈ 𝐾)
13028, 12, 30, 123, 15mulgnn0cld 19083 . . . . . . . . 9 (𝜑 → (0 𝑋) ∈ 𝐾)
1317, 11, 20, 129, 130ringcld 20225 . . . . . . . 8 (𝜑 → ((𝐹‘0) · (0 𝑋)) ∈ 𝐾)
13213, 8, 6, 7coe1fvalcl 22153 . . . . . . . . . 10 ((𝑀𝑈 ∧ 1 ∈ ℕ0) → (𝐹‘1) ∈ 𝐾)
13310, 124, 132sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ 𝐾)
13428, 12, 30, 125, 15mulgnn0cld 19083 . . . . . . . . 9 (𝜑 → (1 𝑋) ∈ 𝐾)
1357, 11, 20, 133, 134ringcld 20225 . . . . . . . 8 (𝜑 → ((𝐹‘1) · (1 𝑋)) ∈ 𝐾)
136 fveq2 6881 . . . . . . . . . 10 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
137 oveq1 7417 . . . . . . . . . 10 (𝑘 = 0 → (𝑘 𝑋) = (0 𝑋))
138136, 137oveq12d 7428 . . . . . . . . 9 (𝑘 = 0 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹‘0) · (0 𝑋)))
139 fveq2 6881 . . . . . . . . . 10 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
140 oveq1 7417 . . . . . . . . . 10 (𝑘 = 1 → (𝑘 𝑋) = (1 𝑋))
141139, 140oveq12d 7428 . . . . . . . . 9 (𝑘 = 1 → ((𝐹𝑘) · (𝑘 𝑋)) = ((𝐹‘1) · (1 𝑋)))
1427, 19, 138, 141gsumpr 19941 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1) ∧ (((𝐹‘0) · (0 𝑋)) ∈ 𝐾 ∧ ((𝐹‘1) · (1 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))))
14321, 123, 125, 127, 131, 135, 142syl132anc 1390 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))))
144 eqid 2736 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
145 evl1deg3.d . . . . . . . . . . 11 𝐷 = (𝐹‘0)
146145, 129eqeltrid 2839 . . . . . . . . . 10 (𝜑𝐷𝐾)
1477, 11, 144, 20, 146ringridmd 20238 . . . . . . . . 9 (𝜑 → (𝐷 · (1r𝑅)) = 𝐷)
148147oveq1d 7425 . . . . . . . 8 (𝜑 → ((𝐷 · (1r𝑅)) + (𝐶 · 𝑋)) = (𝐷 + (𝐶 · 𝑋)))
149145a1i 11 . . . . . . . . . 10 (𝜑𝐷 = (𝐹‘0))
15027, 144ringidval 20148 . . . . . . . . . . . . 13 (1r𝑅) = (0g‘(mulGrp‘𝑅))
15128, 150, 12mulg0 19062 . . . . . . . . . . . 12 (𝑋𝐾 → (0 𝑋) = (1r𝑅))
15215, 151syl 17 . . . . . . . . . . 11 (𝜑 → (0 𝑋) = (1r𝑅))
153152eqcomd 2742 . . . . . . . . . 10 (𝜑 → (1r𝑅) = (0 𝑋))
154149, 153oveq12d 7428 . . . . . . . . 9 (𝜑 → (𝐷 · (1r𝑅)) = ((𝐹‘0) · (0 𝑋)))
155 evl1deg3.c . . . . . . . . . . 11 𝐶 = (𝐹‘1)
156155a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝐹‘1))
15728, 12mulg1 19069 . . . . . . . . . . . 12 (𝑋𝐾 → (1 𝑋) = 𝑋)
15815, 157syl 17 . . . . . . . . . . 11 (𝜑 → (1 𝑋) = 𝑋)
159158eqcomd 2742 . . . . . . . . . 10 (𝜑𝑋 = (1 𝑋))
160156, 159oveq12d 7428 . . . . . . . . 9 (𝜑 → (𝐶 · 𝑋) = ((𝐹‘1) · (1 𝑋)))
161154, 160oveq12d 7428 . . . . . . . 8 (𝜑 → ((𝐷 · (1r𝑅)) + (𝐶 · 𝑋)) = (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))))
162160, 135eqeltrd 2835 . . . . . . . . 9 (𝜑 → (𝐶 · 𝑋) ∈ 𝐾)
1637, 19ringcom 20245 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐷𝐾 ∧ (𝐶 · 𝑋) ∈ 𝐾) → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷))
16420, 146, 162, 163syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷))
165148, 161, 1643eqtr3d 2779 . . . . . . 7 (𝜑 → (((𝐹‘0) · (0 𝑋)) + ((𝐹‘1) · (1 𝑋))) = ((𝐶 · 𝑋) + 𝐷))
166143, 165eqtrd 2771 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐶 · 𝑋) + 𝐷))
167 2nn0 12523 . . . . . . . . 9 2 ∈ ℕ0
168167a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ0)
169 2re 12319 . . . . . . . . . 10 2 ∈ ℝ
170 2lt3 12417 . . . . . . . . . 10 2 < 3
171169, 170ltneii 11353 . . . . . . . . 9 2 ≠ 3
172171a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 3)
173 evl1deg3.b . . . . . . . . . 10 𝐵 = (𝐹‘2)
17413, 8, 6, 7coe1fvalcl 22153 . . . . . . . . . . 11 ((𝑀𝑈 ∧ 2 ∈ ℕ0) → (𝐹‘2) ∈ 𝐾)
17510, 167, 174sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐹‘2) ∈ 𝐾)
176173, 175eqeltrid 2839 . . . . . . . . 9 (𝜑𝐵𝐾)
17728, 12, 30, 168, 15mulgnn0cld 19083 . . . . . . . . 9 (𝜑 → (2 𝑋) ∈ 𝐾)
1787, 11, 20, 176, 177ringcld 20225 . . . . . . . 8 (𝜑 → (𝐵 · (2 𝑋)) ∈ 𝐾)
179 evl1deg3.a . . . . . . . . . 10 𝐴 = (𝐹‘3)
18013, 8, 6, 7coe1fvalcl 22153 . . . . . . . . . . 11 ((𝑀𝑈 ∧ 3 ∈ ℕ0) → (𝐹‘3) ∈ 𝐾)
18110, 44, 180sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐹‘3) ∈ 𝐾)
182179, 181eqeltrid 2839 . . . . . . . . 9 (𝜑𝐴𝐾)
18328, 12, 30, 45, 15mulgnn0cld 19083 . . . . . . . . 9 (𝜑 → (3 𝑋) ∈ 𝐾)
1847, 11, 20, 182, 183ringcld 20225 . . . . . . . 8 (𝜑 → (𝐴 · (3 𝑋)) ∈ 𝐾)
185 fveq2 6881 . . . . . . . . . . 11 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
186185, 173eqtr4di 2789 . . . . . . . . . 10 (𝑘 = 2 → (𝐹𝑘) = 𝐵)
187 oveq1 7417 . . . . . . . . . 10 (𝑘 = 2 → (𝑘 𝑋) = (2 𝑋))
188186, 187oveq12d 7428 . . . . . . . . 9 (𝑘 = 2 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐵 · (2 𝑋)))
189 fveq2 6881 . . . . . . . . . . 11 (𝑘 = 3 → (𝐹𝑘) = (𝐹‘3))
190189, 179eqtr4di 2789 . . . . . . . . . 10 (𝑘 = 3 → (𝐹𝑘) = 𝐴)
191 oveq1 7417 . . . . . . . . . 10 (𝑘 = 3 → (𝑘 𝑋) = (3 𝑋))
192190, 191oveq12d 7428 . . . . . . . . 9 (𝑘 = 3 → ((𝐹𝑘) · (𝑘 𝑋)) = (𝐴 · (3 𝑋)))
1937, 19, 188, 192gsumpr 19941 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≠ 3) ∧ ((𝐵 · (2 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))))
19421, 168, 45, 172, 178, 184, 193syl132anc 1390 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))))
1957, 19cmncom 19784 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (𝐵 · (2 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 𝑋)) ∈ 𝐾) → ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))) = ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))))
19621, 178, 184, 195syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐵 · (2 𝑋)) + (𝐴 · (3 𝑋))) = ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))))
197194, 196eqtrd 2771 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) = ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))))
198166, 197oveq12d 7428 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋)))))
1999crnggrpd 20212 . . . . . . 7 (𝜑𝑅 ∈ Grp)
2007, 19, 199, 162, 146grpcld 18935 . . . . . 6 (𝜑 → ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾)
2017, 19, 199, 184, 178grpcld 18935 . . . . . 6 (𝜑 → ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) ∈ 𝐾)
2027, 19cmncom 19784 . . . . . 6 ((𝑅 ∈ CMnd ∧ ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾 ∧ ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) ∈ 𝐾) → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋)))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
20321, 200, 201, 202syl3anc 1373 . . . . 5 (𝜑 → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋)))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
204198, 203eqtrd 2771 . . . 4 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
205199grpmndd 18934 . . . . 5 (𝜑𝑅 ∈ Mnd)
206 fvexd 6896 . . . . 5 (𝜑 → (ℤ‘4) ∈ V)
20718gsumz 18819 . . . . 5 ((𝑅 ∈ Mnd ∧ (ℤ‘4) ∈ V) → (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅))) = (0g𝑅))
208205, 206, 207syl2anc 584 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅))) = (0g𝑅))
209204, 208oveq12d 7428 . . 3 (𝜑 → (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹𝑘) · (𝑘 𝑋))))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ (0g𝑅)))) = ((((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g𝑅)))
2107, 19, 199, 201, 200grpcld 18935 . . . 4 (𝜑 → (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) ∈ 𝐾)
2117, 19, 18, 199, 210grpridd 18958 . . 3 (𝜑 → ((((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g𝑅)) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
212121, 209, 2113eqtrd 2775 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹𝑘) · (𝑘 𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘4) ↦ ((𝐹𝑘) · (𝑘 𝑋))))) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
21317, 73, 2123eqtrd 2775 1 (𝜑 → ((𝑂𝑀)‘𝑋) = (((𝐴 · (3 𝑋)) + (𝐵 · (2 𝑋))) + ((𝐶 · 𝑋) + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  Vcvv 3464  cun 3929  cin 3930  wss 3931  c0 4313  {cpr 4608   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  Fincfn 8964  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  2c2 12300  3c3 12301  4c4 12302  0cn0 12506  cz 12593  cuz 12857  ..^cfzo 13676  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  .gcmg 19055  CMndccmn 19766  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  CRingccrg 20199  Poly1cpl1 22117  coe1cco1 22118  eval1ce1 22257  deg1cdg1 26016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-cnfld 21321  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-evls 22037  df-evl 22038  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-evls1 22258  df-evl1 22259  df-mdeg 26017  df-deg1 26018
This theorem is referenced by:  2sqr3minply  33819
  Copyright terms: Public domain W3C validator