Step | Hyp | Ref
| Expression |
1 | | oveq2 7421 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑘 ↑ 𝑥) = (𝑘 ↑ 𝑋)) |
2 | 1 | oveq2d 7429 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑥)) = ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))) |
3 | 2 | mpteq2dv 5245 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) |
4 | 3 | oveq2d 7429 |
. . 3
⊢ (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) |
5 | | evl1deg1.2 |
. . . 4
⊢ 𝑂 = (eval1‘𝑅) |
6 | | evl1deg1.1 |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
7 | | evl1deg1.3 |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
8 | | evl1deg1.4 |
. . . 4
⊢ 𝑈 = (Base‘𝑃) |
9 | | evl1deg3.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ CRing) |
10 | | evl1deg3.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑈) |
11 | | evl1deg1.5 |
. . . 4
⊢ · =
(.r‘𝑅) |
12 | | evl1deg2.p |
. . . 4
⊢ ↑ =
(.g‘(mulGrp‘𝑅)) |
13 | | evl1deg3.f |
. . . 4
⊢ 𝐹 = (coe1‘𝑀) |
14 | 5, 6, 7, 8, 9, 10,
11, 12, 13 | evl1fpws 33440 |
. . 3
⊢ (𝜑 → (𝑂‘𝑀) = (𝑥 ∈ 𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑥)))))) |
15 | | evl1deg3.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐾) |
16 | | ovexd 7448 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) ∈ V) |
17 | 4, 14, 15, 16 | fvmptd4 7022 |
. 2
⊢ (𝜑 → ((𝑂‘𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) |
18 | | eqid 2726 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
19 | | evl1deg1.6 |
. . 3
⊢ + =
(+g‘𝑅) |
20 | 9 | crngringd 20222 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
21 | 20 | ringcmnd 20256 |
. . 3
⊢ (𝜑 → 𝑅 ∈ CMnd) |
22 | | nn0ex 12521 |
. . . 4
⊢
ℕ0 ∈ V |
23 | 22 | a1i 11 |
. . 3
⊢ (𝜑 → ℕ0 ∈
V) |
24 | 20 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) |
25 | 13, 8, 6, 7 | coe1fvalcl 22195 |
. . . . 5
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝐾) |
26 | 10, 25 | sylan 578 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝐾) |
27 | | eqid 2726 |
. . . . . 6
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
28 | 27, 7 | mgpbas 20116 |
. . . . 5
⊢ 𝐾 =
(Base‘(mulGrp‘𝑅)) |
29 | 27 | ringmgp 20215 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
30 | 20, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
31 | 30 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(mulGrp‘𝑅) ∈
Mnd) |
32 | | simpr 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
33 | 15 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ 𝐾) |
34 | 28, 12, 31, 32, 33 | mulgnn0cld 19082 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐾) |
35 | 7, 11, 24, 26, 34 | ringcld 20235 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐾) |
36 | | fvexd 6905 |
. . . 4
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
37 | | fveq2 6890 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
38 | | oveq1 7420 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝑘 ↑ 𝑋) = (𝑗 ↑ 𝑋)) |
39 | 37, 38 | oveq12d 7431 |
. . . 4
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = ((𝐹‘𝑗) · (𝑗 ↑ 𝑋))) |
40 | | breq1 5146 |
. . . . . . 7
⊢ (𝑖 = (𝐸‘𝑀) → (𝑖 < 𝑗 ↔ (𝐸‘𝑀) < 𝑗)) |
41 | 40 | imbi1d 340 |
. . . . . 6
⊢ (𝑖 = (𝐸‘𝑀) → ((𝑖 < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)) ↔ ((𝐸‘𝑀) < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)))) |
42 | 41 | ralbidv 3168 |
. . . . 5
⊢ (𝑖 = (𝐸‘𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐸‘𝑀) < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)))) |
43 | | evl1deg3.1 |
. . . . . 6
⊢ (𝜑 → (𝐸‘𝑀) = 3) |
44 | | 3nn0 12533 |
. . . . . . 7
⊢ 3 ∈
ℕ0 |
45 | 44 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 3 ∈
ℕ0) |
46 | 43, 45 | eqeltrd 2826 |
. . . . 5
⊢ (𝜑 → (𝐸‘𝑀) ∈
ℕ0) |
47 | 10 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → 𝑀 ∈ 𝑈) |
48 | | simplr 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → 𝑗 ∈ ℕ0) |
49 | | simpr 483 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → (𝐸‘𝑀) < 𝑗) |
50 | | evl1deg3.e |
. . . . . . . . . . 11
⊢ 𝐸 = (deg1‘𝑅) |
51 | 50, 6, 8, 18, 13 | deg1lt 26118 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑗 ∈ ℕ0 ∧ (𝐸‘𝑀) < 𝑗) → (𝐹‘𝑗) = (0g‘𝑅)) |
52 | 47, 48, 49, 51 | syl3anc 1368 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → (𝐹‘𝑗) = (0g‘𝑅)) |
53 | 52 | oveq1d 7428 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = ((0g‘𝑅) · (𝑗 ↑ 𝑋))) |
54 | 20 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → 𝑅 ∈ Ring) |
55 | 54, 29 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd) |
56 | 15 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → 𝑋 ∈ 𝐾) |
57 | 28, 12, 55, 48, 56 | mulgnn0cld 19082 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → (𝑗 ↑ 𝑋) ∈ 𝐾) |
58 | 7, 11, 18, 54, 57 | ringlzd 20267 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → ((0g‘𝑅) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)) |
59 | 53, 58 | eqtrd 2766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐸‘𝑀) < 𝑗) → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅)) |
60 | 59 | ex 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐸‘𝑀) < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅))) |
61 | 60 | ralrimiva 3136 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐸‘𝑀) < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅))) |
62 | 42, 46, 61 | rspcedvdw 3610 |
. . . 4
⊢ (𝜑 → ∃𝑖 ∈ ℕ0 ∀𝑗 ∈ ℕ0
(𝑖 < 𝑗 → ((𝐹‘𝑗) · (𝑗 ↑ 𝑋)) = (0g‘𝑅))) |
63 | 36, 35, 39, 62 | mptnn0fsuppd 14009 |
. . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑅)) |
64 | | fzouzdisj 13713 |
. . . 4
⊢ ((0..^4)
∩ (ℤ≥‘4)) = ∅ |
65 | 64 | a1i 11 |
. . 3
⊢ (𝜑 → ((0..^4) ∩
(ℤ≥‘4)) = ∅) |
66 | | nn0uz 12907 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
67 | | 4nn0 12534 |
. . . . . . 7
⊢ 4 ∈
ℕ0 |
68 | 67, 66 | eleqtri 2824 |
. . . . . 6
⊢ 4 ∈
(ℤ≥‘0) |
69 | | fzouzsplit 13712 |
. . . . . 6
⊢ (4 ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0..^4) ∪ (ℤ≥‘4))) |
70 | 68, 69 | ax-mp 5 |
. . . . 5
⊢
(ℤ≥‘0) = ((0..^4) ∪
(ℤ≥‘4)) |
71 | 66, 70 | eqtri 2754 |
. . . 4
⊢
ℕ0 = ((0..^4) ∪
(ℤ≥‘4)) |
72 | 71 | a1i 11 |
. . 3
⊢ (𝜑 → ℕ0 =
((0..^4) ∪ (ℤ≥‘4))) |
73 | 7, 18, 19, 21, 23, 35, 63, 65, 72 | gsumsplit2 19920 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))))) |
74 | | fzofi 13985 |
. . . . . 6
⊢ (0..^4)
∈ Fin |
75 | 74 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0..^4) ∈
Fin) |
76 | | fzo0ssnn0 13758 |
. . . . . . . 8
⊢ (0..^4)
⊆ ℕ0 |
77 | 76 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (0..^4) ⊆
ℕ0) |
78 | 77 | sselda 3978 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^4)) → 𝑘 ∈ ℕ0) |
79 | 78, 35 | syldan 589 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^4)) → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐾) |
80 | | 0ne2 12462 |
. . . . . . 7
⊢ 0 ≠
2 |
81 | | 1ne2 12463 |
. . . . . . 7
⊢ 1 ≠
2 |
82 | | 0re 11254 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
83 | | 3pos 12360 |
. . . . . . . 8
⊢ 0 <
3 |
84 | 82, 83 | ltneii 11365 |
. . . . . . 7
⊢ 0 ≠
3 |
85 | | 1re 11252 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
86 | | 1lt3 12428 |
. . . . . . . 8
⊢ 1 <
3 |
87 | 85, 86 | ltneii 11365 |
. . . . . . 7
⊢ 1 ≠
3 |
88 | | disjpr2 4712 |
. . . . . . 7
⊢ (((0 ≠
2 ∧ 1 ≠ 2) ∧ (0 ≠ 3 ∧ 1 ≠ 3)) → ({0, 1} ∩ {2, 3})
= ∅) |
89 | 80, 81, 84, 87, 88 | mp4an 691 |
. . . . . 6
⊢ ({0, 1}
∩ {2, 3}) = ∅ |
90 | 89 | a1i 11 |
. . . . 5
⊢ (𝜑 → ({0, 1} ∩ {2, 3}) =
∅) |
91 | | fzo0to42pr 13764 |
. . . . . 6
⊢ (0..^4) =
({0, 1} ∪ {2, 3}) |
92 | 91 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0..^4) = ({0, 1} ∪
{2, 3})) |
93 | 7, 19, 21, 75, 79, 90, 92 | gsummptfidmsplit 19921 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))))) |
94 | 10 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 𝑀 ∈ 𝑈) |
95 | | uzss 12888 |
. . . . . . . . . . . . 13
⊢ (4 ∈
(ℤ≥‘0) → (ℤ≥‘4)
⊆ (ℤ≥‘0)) |
96 | 68, 95 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘4) ⊆
(ℤ≥‘0) |
97 | 96, 66 | sseqtrri 4016 |
. . . . . . . . . . 11
⊢
(ℤ≥‘4) ⊆
ℕ0 |
98 | 97 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 →
(ℤ≥‘4) ⊆ ℕ0) |
99 | 98 | sselda 3978 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 𝑘 ∈
ℕ0) |
100 | 43 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (𝐸‘𝑀) = 3) |
101 | | 3p1e4 12400 |
. . . . . . . . . . . . . 14
⊢ (3 + 1) =
4 |
102 | 101 | fveq2i 6893 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘(3 + 1)) =
(ℤ≥‘4) |
103 | 102 | eleq2i 2818 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘(3 + 1)) ↔ 𝑘 ∈
(ℤ≥‘4)) |
104 | | 3z 12638 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℤ |
105 | | eluzp1l 12892 |
. . . . . . . . . . . . 13
⊢ ((3
∈ ℤ ∧ 𝑘
∈ (ℤ≥‘(3 + 1))) → 3 < 𝑘) |
106 | 104, 105 | mpan 688 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘(3 + 1)) → 3 < 𝑘) |
107 | 103, 106 | sylbir 234 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘4) → 3 < 𝑘) |
108 | 107 | adantl 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 3 < 𝑘) |
109 | 100, 108 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (𝐸‘𝑀) < 𝑘) |
110 | 50, 6, 8, 18, 13 | deg1lt 26118 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ∧ (𝐸‘𝑀) < 𝑘) → (𝐹‘𝑘) = (0g‘𝑅)) |
111 | 94, 99, 109, 110 | syl3anc 1368 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (𝐹‘𝑘) = (0g‘𝑅)) |
112 | 111 | oveq1d 7428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = ((0g‘𝑅) · (𝑘 ↑ 𝑋))) |
113 | 20 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 𝑅 ∈
Ring) |
114 | 113, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (mulGrp‘𝑅)
∈ Mnd) |
115 | 15 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ 𝑋 ∈ 𝐾) |
116 | 28, 12, 114, 99, 115 | mulgnn0cld 19082 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ (𝑘 ↑ 𝑋) ∈ 𝐾) |
117 | 7, 11, 18, 113, 116 | ringlzd 20267 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ ((0g‘𝑅) · (𝑘 ↑ 𝑋)) = (0g‘𝑅)) |
118 | 112, 117 | eqtrd 2766 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘4))
→ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = (0g‘𝑅)) |
119 | 118 | mpteq2dva 5243 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘4)
↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))) = (𝑘 ∈ (ℤ≥‘4)
↦ (0g‘𝑅))) |
120 | 119 | oveq2d 7429 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅)))) |
121 | 93, 120 | oveq12d 7431 |
. . 3
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) = (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅))))) |
122 | | 0nn0 12530 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
123 | 122 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℕ0) |
124 | | 1nn0 12531 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
125 | 124 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℕ0) |
126 | | 0ne1 12326 |
. . . . . . . . 9
⊢ 0 ≠
1 |
127 | 126 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ≠ 1) |
128 | 13, 8, 6, 7 | coe1fvalcl 22195 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑈 ∧ 0 ∈ ℕ0) →
(𝐹‘0) ∈ 𝐾) |
129 | 10, 122, 128 | sylancl 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘0) ∈ 𝐾) |
130 | 28, 12, 30, 123, 15 | mulgnn0cld 19082 |
. . . . . . . . 9
⊢ (𝜑 → (0 ↑ 𝑋) ∈ 𝐾) |
131 | 7, 11, 20, 129, 130 | ringcld 20235 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘0) · (0 ↑ 𝑋)) ∈ 𝐾) |
132 | 13, 8, 6, 7 | coe1fvalcl 22195 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑈 ∧ 1 ∈ ℕ0) →
(𝐹‘1) ∈ 𝐾) |
133 | 10, 124, 132 | sylancl 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘1) ∈ 𝐾) |
134 | 28, 12, 30, 125, 15 | mulgnn0cld 19082 |
. . . . . . . . 9
⊢ (𝜑 → (1 ↑ 𝑋) ∈ 𝐾) |
135 | 7, 11, 20, 133, 134 | ringcld 20235 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘1) · (1 ↑ 𝑋)) ∈ 𝐾) |
136 | | fveq2 6890 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) |
137 | | oveq1 7420 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (𝑘 ↑ 𝑋) = (0 ↑ 𝑋)) |
138 | 136, 137 | oveq12d 7431 |
. . . . . . . . 9
⊢ (𝑘 = 0 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = ((𝐹‘0) · (0 ↑ 𝑋))) |
139 | | fveq2 6890 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) |
140 | | oveq1 7420 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → (𝑘 ↑ 𝑋) = (1 ↑ 𝑋)) |
141 | 139, 140 | oveq12d 7431 |
. . . . . . . . 9
⊢ (𝑘 = 1 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = ((𝐹‘1) · (1 ↑ 𝑋))) |
142 | 7, 19, 138, 141 | gsumpr 19946 |
. . . . . . . 8
⊢ ((𝑅 ∈ CMnd ∧ (0 ∈
ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1) ∧
(((𝐹‘0) · (0
↑
𝑋)) ∈ 𝐾 ∧ ((𝐹‘1) · (1 ↑ 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = (((𝐹‘0) · (0 ↑ 𝑋)) + ((𝐹‘1) · (1 ↑ 𝑋)))) |
143 | 21, 123, 125, 127, 131, 135, 142 | syl132anc 1385 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = (((𝐹‘0) · (0 ↑ 𝑋)) + ((𝐹‘1) · (1 ↑ 𝑋)))) |
144 | | eqid 2726 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
145 | | evl1deg3.d |
. . . . . . . . . . 11
⊢ 𝐷 = (𝐹‘0) |
146 | 145, 129 | eqeltrid 2830 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝐾) |
147 | 7, 11, 144, 20, 146 | ringridmd 20245 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ·
(1r‘𝑅)) =
𝐷) |
148 | 147 | oveq1d 7428 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷 ·
(1r‘𝑅))
+ (𝐶 · 𝑋)) = (𝐷 + (𝐶 · 𝑋))) |
149 | 145 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 = (𝐹‘0)) |
150 | 27, 144 | ringidval 20159 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
151 | 28, 150, 12 | mulg0 19061 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐾 → (0 ↑ 𝑋) = (1r‘𝑅)) |
152 | 15, 151 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑅)) |
153 | 152 | eqcomd 2732 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝑅) = (0 ↑ 𝑋)) |
154 | 149, 153 | oveq12d 7431 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ·
(1r‘𝑅)) =
((𝐹‘0) · (0
↑
𝑋))) |
155 | | evl1deg3.c |
. . . . . . . . . . 11
⊢ 𝐶 = (𝐹‘1) |
156 | 155 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 = (𝐹‘1)) |
157 | 28, 12 | mulg1 19068 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐾 → (1 ↑ 𝑋) = 𝑋) |
158 | 15, 157 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ↑ 𝑋) = 𝑋) |
159 | 158 | eqcomd 2732 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = (1 ↑ 𝑋)) |
160 | 156, 159 | oveq12d 7431 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 · 𝑋) = ((𝐹‘1) · (1 ↑ 𝑋))) |
161 | 154, 160 | oveq12d 7431 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷 ·
(1r‘𝑅))
+ (𝐶 · 𝑋)) = (((𝐹‘0) · (0 ↑ 𝑋)) + ((𝐹‘1) · (1 ↑ 𝑋)))) |
162 | 160, 135 | eqeltrd 2826 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 · 𝑋) ∈ 𝐾) |
163 | 7, 19 | ringcom 20252 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐷 ∈ 𝐾 ∧ (𝐶 · 𝑋) ∈ 𝐾) → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷)) |
164 | 20, 146, 162, 163 | syl3anc 1368 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 + (𝐶 · 𝑋)) = ((𝐶 · 𝑋) + 𝐷)) |
165 | 148, 161,
164 | 3eqtr3d 2774 |
. . . . . . 7
⊢ (𝜑 → (((𝐹‘0) · (0 ↑ 𝑋)) + ((𝐹‘1) · (1 ↑ 𝑋))) = ((𝐶 · 𝑋) + 𝐷)) |
166 | 143, 165 | eqtrd 2766 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝐶 · 𝑋) + 𝐷)) |
167 | | 2nn0 12532 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
168 | 167 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℕ0) |
169 | | 2re 12329 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
170 | | 2lt3 12427 |
. . . . . . . . . 10
⊢ 2 <
3 |
171 | 169, 170 | ltneii 11365 |
. . . . . . . . 9
⊢ 2 ≠
3 |
172 | 171 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ≠ 3) |
173 | | evl1deg3.b |
. . . . . . . . . 10
⊢ 𝐵 = (𝐹‘2) |
174 | 13, 8, 6, 7 | coe1fvalcl 22195 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑈 ∧ 2 ∈ ℕ0) →
(𝐹‘2) ∈ 𝐾) |
175 | 10, 167, 174 | sylancl 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘2) ∈ 𝐾) |
176 | 173, 175 | eqeltrid 2830 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ 𝐾) |
177 | 28, 12, 30, 168, 15 | mulgnn0cld 19082 |
. . . . . . . . 9
⊢ (𝜑 → (2 ↑ 𝑋) ∈ 𝐾) |
178 | 7, 11, 20, 176, 177 | ringcld 20235 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · (2 ↑ 𝑋)) ∈ 𝐾) |
179 | | evl1deg3.a |
. . . . . . . . . 10
⊢ 𝐴 = (𝐹‘3) |
180 | 13, 8, 6, 7 | coe1fvalcl 22195 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑈 ∧ 3 ∈ ℕ0) →
(𝐹‘3) ∈ 𝐾) |
181 | 10, 44, 180 | sylancl 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘3) ∈ 𝐾) |
182 | 179, 181 | eqeltrid 2830 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝐾) |
183 | 28, 12, 30, 45, 15 | mulgnn0cld 19082 |
. . . . . . . . 9
⊢ (𝜑 → (3 ↑ 𝑋) ∈ 𝐾) |
184 | 7, 11, 20, 182, 183 | ringcld 20235 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 · (3 ↑ 𝑋)) ∈ 𝐾) |
185 | | fveq2 6890 |
. . . . . . . . . . 11
⊢ (𝑘 = 2 → (𝐹‘𝑘) = (𝐹‘2)) |
186 | 185, 173 | eqtr4di 2784 |
. . . . . . . . . 10
⊢ (𝑘 = 2 → (𝐹‘𝑘) = 𝐵) |
187 | | oveq1 7420 |
. . . . . . . . . 10
⊢ (𝑘 = 2 → (𝑘 ↑ 𝑋) = (2 ↑ 𝑋)) |
188 | 186, 187 | oveq12d 7431 |
. . . . . . . . 9
⊢ (𝑘 = 2 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = (𝐵 · (2 ↑ 𝑋))) |
189 | | fveq2 6890 |
. . . . . . . . . . 11
⊢ (𝑘 = 3 → (𝐹‘𝑘) = (𝐹‘3)) |
190 | 189, 179 | eqtr4di 2784 |
. . . . . . . . . 10
⊢ (𝑘 = 3 → (𝐹‘𝑘) = 𝐴) |
191 | | oveq1 7420 |
. . . . . . . . . 10
⊢ (𝑘 = 3 → (𝑘 ↑ 𝑋) = (3 ↑ 𝑋)) |
192 | 190, 191 | oveq12d 7431 |
. . . . . . . . 9
⊢ (𝑘 = 3 → ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)) = (𝐴 · (3 ↑ 𝑋))) |
193 | 7, 19, 188, 192 | gsumpr 19946 |
. . . . . . . 8
⊢ ((𝑅 ∈ CMnd ∧ (2 ∈
ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≠ 3) ∧
((𝐵 · (2 ↑ 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 ↑ 𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝐵 · (2 ↑ 𝑋)) + (𝐴 · (3 ↑ 𝑋)))) |
194 | 21, 168, 45, 172, 178, 184, 193 | syl132anc 1385 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝐵 · (2 ↑ 𝑋)) + (𝐴 · (3 ↑ 𝑋)))) |
195 | 7, 19 | cmncom 19789 |
. . . . . . . 8
⊢ ((𝑅 ∈ CMnd ∧ (𝐵 · (2 ↑ 𝑋)) ∈ 𝐾 ∧ (𝐴 · (3 ↑ 𝑋)) ∈ 𝐾) → ((𝐵 · (2 ↑ 𝑋)) + (𝐴 · (3 ↑ 𝑋))) = ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) |
196 | 21, 178, 184, 195 | syl3anc 1368 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 · (2 ↑ 𝑋)) + (𝐴 · (3 ↑ 𝑋))) = ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) |
197 | 194, 196 | eqtrd 2766 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) = ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) |
198 | 166, 197 | oveq12d 7431 |
. . . . 5
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) = (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))))) |
199 | 9 | crnggrpd 20223 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) |
200 | 7, 19, 199, 162, 146 | grpcld 18934 |
. . . . . 6
⊢ (𝜑 → ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾) |
201 | 7, 19, 199, 184, 178 | grpcld 18934 |
. . . . . 6
⊢ (𝜑 → ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) ∈ 𝐾) |
202 | 7, 19 | cmncom 19789 |
. . . . . 6
⊢ ((𝑅 ∈ CMnd ∧ ((𝐶 · 𝑋) + 𝐷) ∈ 𝐾 ∧ ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) ∈ 𝐾) → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
203 | 21, 200, 201, 202 | syl3anc 1368 |
. . . . 5
⊢ (𝜑 → (((𝐶 · 𝑋) + 𝐷) + ((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋)))) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
204 | 198, 203 | eqtrd 2766 |
. . . 4
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
205 | 199 | grpmndd 18933 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
206 | | fvexd 6905 |
. . . . 5
⊢ (𝜑 →
(ℤ≥‘4) ∈ V) |
207 | 18 | gsumz 18818 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧
(ℤ≥‘4) ∈ V) → (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅))) = (0g‘𝑅)) |
208 | 205, 206,
207 | syl2anc 582 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅))) = (0g‘𝑅)) |
209 | 204, 208 | oveq12d 7431 |
. . 3
⊢ (𝜑 → (((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈ {2, 3} ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ (0g‘𝑅)))) = ((((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g‘𝑅))) |
210 | 7, 19, 199, 201, 200 | grpcld 18934 |
. . . 4
⊢ (𝜑 → (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) ∈ 𝐾) |
211 | 7, 19, 18, 199, 210 | grpridd 18957 |
. . 3
⊢ (𝜑 → ((((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷)) + (0g‘𝑅)) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
212 | 121, 209,
211 | 3eqtrd 2770 |
. 2
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋)))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘4) ↦ ((𝐹‘𝑘) · (𝑘 ↑ 𝑋))))) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |
213 | 17, 73, 212 | 3eqtrd 2770 |
1
⊢ (𝜑 → ((𝑂‘𝑀)‘𝑋) = (((𝐴 · (3 ↑ 𝑋)) + (𝐵 · (2 ↑ 𝑋))) + ((𝐶 · 𝑋) + 𝐷))) |