MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elfz Structured version   Visualization version   GIF version

Theorem 0elfz 13446
Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.)
Assertion
Ref Expression
0elfz (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))

Proof of Theorem 0elfz
StepHypRef Expression
1 0nn0 12341 . . 3 0 ∈ ℕ0
21a1i 11 . 2 (𝑁 ∈ ℕ0 → 0 ∈ ℕ0)
3 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
4 nn0ge0 12351 . 2 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
5 elfz2nn0 13440 . 2 (0 ∈ (0...𝑁) ↔ (0 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑁))
62, 3, 4, 5syl3anbrc 1342 1 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105   class class class wbr 5089  (class class class)co 7329  0cc0 10964  cle 11103  0cn0 12326  ...cfz 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333
This theorem is referenced by:  fz0sn0fz1  13466  bcn0  14117  pfxmpt  14481  pfxfv  14485  pfxswrd  14509  swrdpfx  14510  pfxpfx  14511  pfxccatpfx1  14539  pfxccatpfx2  14540  pfxco  14642  chfacfscmulgsum  22107  chfacfpmmulgsum  22111  cayhamlem1  22113  wlkepvtx  28257  pthdadjvtx  28327  spthdep  28331  spthonepeq  28349  crctcsh  28418  wwlknllvtx  28440  wpthswwlks2on  28555  erclwwlknref  28662  0wlkonlem1  28711  upgr3v3e3cycl  28773  upgr4cycl4dv4e  28778  eupth2eucrct  28810  konigsbergiedgw  28841  konigsberglem1  28845  konigsberglem2  28846  konigsberglem3  28847  konigsberglem4  28848  cycpmco2f1  31619  circlemethhgt  32864  f1resfz0f1d  33312  pthhashvtx  33329  poimirlem5  35880  poimirlem20  35895  poimirlem22  35897  poimirlem28  35903  poimirlem32  35907  prjspnfv01  40711  prjspner01  40712  prjspner1  40713  iccpartigtl  45215  iccpartlt  45216  iccpartgel  45221  iccpartrn  45222  iccelpart  45225  iccpartiun  45226  iccpartdisj  45229
  Copyright terms: Public domain W3C validator