![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elfz | Structured version Visualization version GIF version |
Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
Ref | Expression |
---|---|
0elfz | ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12539 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℕ0) |
3 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
4 | nn0ge0 12549 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
5 | elfz2nn0 13655 | . 2 ⊢ (0 ∈ (0...𝑁) ↔ (0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑁)) | |
6 | 2, 3, 4, 5 | syl3anbrc 1342 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 0cc0 11153 ≤ cle 11294 ℕ0cn0 12524 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: fz0sn0fz1 13682 bcn0 14346 pfxmpt 14713 pfxfv 14717 pfxswrd 14741 swrdpfx 14742 pfxpfx 14743 pfxccatpfx1 14771 pfxccatpfx2 14772 pfxco 14874 chfacfscmulgsum 22882 chfacfpmmulgsum 22886 cayhamlem1 22888 wlkepvtx 29693 pthdadjvtx 29763 spthdep 29767 spthonepeq 29785 crctcsh 29854 wwlknllvtx 29876 wpthswwlks2on 29991 erclwwlknref 30098 0wlkonlem1 30147 upgr3v3e3cycl 30209 upgr4cycl4dv4e 30214 eupth2eucrct 30246 konigsbergiedgw 30277 konigsberglem1 30281 konigsberglem2 30282 konigsberglem3 30283 konigsberglem4 30284 cycpmco2f1 33127 circlemethhgt 34637 f1resfz0f1d 35098 pthhashvtx 35112 poimirlem5 37612 poimirlem20 37627 poimirlem22 37629 poimirlem28 37635 poimirlem32 37639 prjspnfv01 42611 prjspner01 42612 prjspner1 42613 iccpartigtl 47348 iccpartlt 47349 iccpartgel 47354 iccpartrn 47355 iccelpart 47358 iccpartiun 47359 iccpartdisj 47362 stgredgiun 47861 stgrvtx0 47865 stgrnbgr0 47867 isubgr3stgrlem7 47875 usgrexmpl1lem 47916 usgrexmpl2lem 47921 |
Copyright terms: Public domain | W3C validator |