| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elfz | Structured version Visualization version GIF version | ||
| Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
| Ref | Expression |
|---|---|
| 0elfz | ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12457 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℕ0) |
| 3 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 4 | nn0ge0 12467 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 5 | elfz2nn0 13579 | . 2 ⊢ (0 ∈ (0...𝑁) ↔ (0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑁)) | |
| 6 | 2, 3, 4, 5 | syl3anbrc 1344 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 0cc0 11068 ≤ cle 11209 ℕ0cn0 12442 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: fz0sn0fz1 13606 bcn0 14275 pfxmpt 14643 pfxfv 14647 pfxswrd 14671 swrdpfx 14672 pfxpfx 14673 pfxccatpfx1 14701 pfxccatpfx2 14702 pfxco 14804 chfacfscmulgsum 22747 chfacfpmmulgsum 22751 cayhamlem1 22753 wlkepvtx 29588 pthdadjvtx 29658 dfpth2 29659 spthdep 29664 spthonepeq 29682 cyclnumvtx 29730 crctcsh 29754 wwlknllvtx 29776 wpthswwlks2on 29891 erclwwlknref 29998 0wlkonlem1 30047 upgr3v3e3cycl 30109 upgr4cycl4dv4e 30114 eupth2eucrct 30146 konigsbergiedgw 30177 konigsberglem1 30181 konigsberglem2 30182 konigsberglem3 30183 konigsberglem4 30184 cycpmco2f1 33081 circlemethhgt 34634 f1resfz0f1d 35101 pthhashvtx 35115 poimirlem5 37619 poimirlem20 37634 poimirlem22 37636 poimirlem28 37642 poimirlem32 37646 prjspnfv01 42612 prjspner01 42613 prjspner1 42614 iccpartigtl 47424 iccpartlt 47425 iccpartgel 47430 iccpartrn 47431 iccelpart 47434 iccpartiun 47435 iccpartdisj 47438 upgrimpthslem2 47908 upgrimpths 47909 upgrimcycls 47911 cycl3grtri 47946 stgredgiun 47957 stgrvtx0 47961 stgrnbgr0 47963 isubgr3stgrlem7 47971 usgrexmpl1lem 48012 usgrexmpl2lem 48017 |
| Copyright terms: Public domain | W3C validator |