MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elfz Structured version   Visualization version   GIF version

Theorem 0elfz 12999
Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.)
Assertion
Ref Expression
0elfz (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))

Proof of Theorem 0elfz
StepHypRef Expression
1 0nn0 11900 . . 3 0 ∈ ℕ0
21a1i 11 . 2 (𝑁 ∈ ℕ0 → 0 ∈ ℕ0)
3 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
4 nn0ge0 11910 . 2 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
5 elfz2nn0 12993 . 2 (0 ∈ (0...𝑁) ↔ (0 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑁))
62, 3, 4, 5syl3anbrc 1340 1 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   class class class wbr 5030  (class class class)co 7135  0cc0 10526  cle 10665  0cn0 11885  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  fz0sn0fz1  13019  bcn0  13666  pfxmpt  14031  pfxfv  14035  pfxswrd  14059  swrdpfx  14060  pfxpfx  14061  pfxccatpfx1  14089  pfxccatpfx2  14090  pfxco  14191  chfacfscmulgsum  21465  chfacfpmmulgsum  21469  cayhamlem1  21471  wlkepvtx  27450  pthdadjvtx  27519  spthdep  27523  spthonepeq  27541  crctcsh  27610  wwlknllvtx  27632  wpthswwlks2on  27747  erclwwlknref  27854  0wlkonlem1  27903  upgr3v3e3cycl  27965  upgr4cycl4dv4e  27970  eupth2eucrct  28002  konigsbergiedgw  28033  konigsberglem1  28037  konigsberglem2  28038  konigsberglem3  28039  konigsberglem4  28040  cycpmco2f1  30816  circlemethhgt  32024  f1resfz0f1d  32471  pthhashvtx  32487  poimirlem5  35062  poimirlem20  35077  poimirlem22  35079  poimirlem28  35085  poimirlem32  35089  iccpartigtl  43940  iccpartlt  43941  iccpartgel  43946  iccpartrn  43947  iccelpart  43950  iccpartiun  43951  iccpartdisj  43954
  Copyright terms: Public domain W3C validator