| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elfz | Structured version Visualization version GIF version | ||
| Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
| Ref | Expression |
|---|---|
| 0elfz | ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12417 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℕ0) |
| 3 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 4 | nn0ge0 12427 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 5 | elfz2nn0 13539 | . 2 ⊢ (0 ∈ (0...𝑁) ↔ (0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑁)) | |
| 6 | 2, 3, 4, 5 | syl3anbrc 1344 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 0cc0 11028 ≤ cle 11169 ℕ0cn0 12402 ...cfz 13428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 |
| This theorem is referenced by: fz0sn0fz1 13566 bcn0 14235 pfxmpt 14603 pfxfv 14607 pfxswrd 14630 swrdpfx 14631 pfxpfx 14632 pfxccatpfx1 14660 pfxccatpfx2 14661 pfxco 14763 chfacfscmulgsum 22763 chfacfpmmulgsum 22767 cayhamlem1 22769 wlkepvtx 29622 pthdadjvtx 29691 dfpth2 29692 spthdep 29697 spthonepeq 29715 cyclnumvtx 29763 crctcsh 29787 wwlknllvtx 29809 wpthswwlks2on 29924 erclwwlknref 30031 0wlkonlem1 30080 upgr3v3e3cycl 30142 upgr4cycl4dv4e 30147 eupth2eucrct 30179 konigsbergiedgw 30210 konigsberglem1 30214 konigsberglem2 30215 konigsberglem3 30216 konigsberglem4 30217 cycpmco2f1 33079 circlemethhgt 34613 f1resfz0f1d 35089 pthhashvtx 35103 poimirlem5 37607 poimirlem20 37622 poimirlem22 37624 poimirlem28 37630 poimirlem32 37634 prjspnfv01 42600 prjspner01 42601 prjspner1 42602 iccpartigtl 47411 iccpartlt 47412 iccpartgel 47417 iccpartrn 47418 iccelpart 47421 iccpartiun 47422 iccpartdisj 47425 upgrimpthslem2 47896 upgrimpths 47897 upgrimcycls 47899 cycl3grtri 47935 stgredgiun 47946 stgrvtx0 47950 stgrnbgr0 47952 isubgr3stgrlem7 47960 usgrexmpl1lem 48009 usgrexmpl2lem 48014 |
| Copyright terms: Public domain | W3C validator |