| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elfz | Structured version Visualization version GIF version | ||
| Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
| Ref | Expression |
|---|---|
| 0elfz | ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12396 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℕ0) |
| 3 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 4 | nn0ge0 12406 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 5 | elfz2nn0 13518 | . 2 ⊢ (0 ∈ (0...𝑁) ↔ (0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑁)) | |
| 6 | 2, 3, 4, 5 | syl3anbrc 1344 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 0cc0 11006 ≤ cle 11147 ℕ0cn0 12381 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: fz0sn0fz1 13545 bcn0 14217 pfxmpt 14586 pfxfv 14590 pfxswrd 14613 swrdpfx 14614 pfxpfx 14615 pfxccatpfx1 14643 pfxccatpfx2 14644 pfxco 14745 chfacfscmulgsum 22776 chfacfpmmulgsum 22780 cayhamlem1 22782 wlkepvtx 29638 pthdadjvtx 29707 dfpth2 29708 spthdep 29713 spthonepeq 29731 cyclnumvtx 29779 crctcsh 29803 wwlknllvtx 29825 wpthswwlks2on 29940 erclwwlknref 30047 0wlkonlem1 30096 upgr3v3e3cycl 30158 upgr4cycl4dv4e 30163 eupth2eucrct 30195 konigsbergiedgw 30226 konigsberglem1 30230 konigsberglem2 30231 konigsberglem3 30232 konigsberglem4 30233 cycpmco2f1 33091 circlemethhgt 34654 f1resfz0f1d 35156 pthhashvtx 35170 poimirlem5 37671 poimirlem20 37686 poimirlem22 37688 poimirlem28 37694 poimirlem32 37698 prjspnfv01 42663 prjspner01 42664 prjspner1 42665 iccpartigtl 47460 iccpartlt 47461 iccpartgel 47466 iccpartrn 47467 iccelpart 47470 iccpartiun 47471 iccpartdisj 47474 upgrimpthslem2 47945 upgrimpths 47946 upgrimcycls 47948 cycl3grtri 47984 stgredgiun 47995 stgrvtx0 47999 stgrnbgr0 48001 isubgr3stgrlem7 48009 usgrexmpl1lem 48058 usgrexmpl2lem 48063 |
| Copyright terms: Public domain | W3C validator |