| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elfz | Structured version Visualization version GIF version | ||
| Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
| Ref | Expression |
|---|---|
| 0elfz | ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12521 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℕ0) |
| 3 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 4 | nn0ge0 12531 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 5 | elfz2nn0 13640 | . 2 ⊢ (0 ∈ (0...𝑁) ↔ (0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑁)) | |
| 6 | 2, 3, 4, 5 | syl3anbrc 1344 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 0cc0 11134 ≤ cle 11275 ℕ0cn0 12506 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 |
| This theorem is referenced by: fz0sn0fz1 13667 bcn0 14333 pfxmpt 14701 pfxfv 14705 pfxswrd 14729 swrdpfx 14730 pfxpfx 14731 pfxccatpfx1 14759 pfxccatpfx2 14760 pfxco 14862 chfacfscmulgsum 22803 chfacfpmmulgsum 22807 cayhamlem1 22809 wlkepvtx 29645 pthdadjvtx 29715 dfpth2 29716 spthdep 29721 spthonepeq 29739 cyclnumvtx 29787 crctcsh 29811 wwlknllvtx 29833 wpthswwlks2on 29948 erclwwlknref 30055 0wlkonlem1 30104 upgr3v3e3cycl 30166 upgr4cycl4dv4e 30171 eupth2eucrct 30203 konigsbergiedgw 30234 konigsberglem1 30238 konigsberglem2 30239 konigsberglem3 30240 konigsberglem4 30241 cycpmco2f1 33140 circlemethhgt 34680 f1resfz0f1d 35141 pthhashvtx 35155 poimirlem5 37654 poimirlem20 37669 poimirlem22 37671 poimirlem28 37677 poimirlem32 37681 prjspnfv01 42622 prjspner01 42623 prjspner1 42624 iccpartigtl 47417 iccpartlt 47418 iccpartgel 47423 iccpartrn 47424 iccelpart 47427 iccpartiun 47428 iccpartdisj 47431 upgrimpthslem2 47901 upgrimpths 47902 upgrimcycls 47904 cycl3grtri 47939 stgredgiun 47950 stgrvtx0 47954 stgrnbgr0 47956 isubgr3stgrlem7 47964 usgrexmpl1lem 48005 usgrexmpl2lem 48010 |
| Copyright terms: Public domain | W3C validator |