Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elfz | Structured version Visualization version GIF version |
Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
Ref | Expression |
---|---|
0elfz | ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12248 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℕ0) |
3 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
4 | nn0ge0 12258 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
5 | elfz2nn0 13347 | . 2 ⊢ (0 ∈ (0...𝑁) ↔ (0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑁)) | |
6 | 2, 3, 4, 5 | syl3anbrc 1342 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 0cc0 10871 ≤ cle 11010 ℕ0cn0 12233 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 |
This theorem is referenced by: fz0sn0fz1 13373 bcn0 14024 pfxmpt 14391 pfxfv 14395 pfxswrd 14419 swrdpfx 14420 pfxpfx 14421 pfxccatpfx1 14449 pfxccatpfx2 14450 pfxco 14551 chfacfscmulgsum 22009 chfacfpmmulgsum 22013 cayhamlem1 22015 wlkepvtx 28028 pthdadjvtx 28098 spthdep 28102 spthonepeq 28120 crctcsh 28189 wwlknllvtx 28211 wpthswwlks2on 28326 erclwwlknref 28433 0wlkonlem1 28482 upgr3v3e3cycl 28544 upgr4cycl4dv4e 28549 eupth2eucrct 28581 konigsbergiedgw 28612 konigsberglem1 28616 konigsberglem2 28617 konigsberglem3 28618 konigsberglem4 28619 cycpmco2f1 31391 circlemethhgt 32623 f1resfz0f1d 33072 pthhashvtx 33089 poimirlem5 35782 poimirlem20 35797 poimirlem22 35799 poimirlem28 35805 poimirlem32 35809 prjspnfv01 40461 prjspner01 40462 prjspner1 40463 iccpartigtl 44875 iccpartlt 44876 iccpartgel 44881 iccpartrn 44882 iccelpart 44885 iccpartiun 44886 iccpartdisj 44889 |
Copyright terms: Public domain | W3C validator |