MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le2sqd Structured version   Visualization version   GIF version

Theorem le2sqd 14280
Description: The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
sqgt0d.1 (𝜑𝐴 ∈ ℝ)
lt2sqd.2 (𝜑𝐵 ∈ ℝ)
lt2sqd.3 (𝜑 → 0 ≤ 𝐴)
lt2sqd.4 (𝜑 → 0 ≤ 𝐵)
Assertion
Ref Expression
le2sqd (𝜑 → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))

Proof of Theorem le2sqd
StepHypRef Expression
1 sqgt0d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 lt2sqd.3 . 2 (𝜑 → 0 ≤ 𝐴)
3 lt2sqd.2 . 2 (𝜑𝐵 ∈ ℝ)
4 lt2sqd.4 . 2 (𝜑 → 0 ≤ 𝐵)
5 le2sq 14157 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))
61, 2, 3, 4, 5syl22anc 838 1 (𝜑 → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109   class class class wbr 5124  (class class class)co 7410  cr 11133  0cc0 11134  cle 11275  2c2 12300  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-exp 14085
This theorem is referenced by:  abstri  15354  amgm2  15393  ipcau2  25191  tcphcphlem1  25192  trirn  25357  rrxdstprj1  25366  minveclem3b  25385  minveclem4  25389  minveclem6  25391  pjthlem1  25394  atans2  26898  basellem8  27055  chpub  27188  2sqmod  27404  dchrisum0  27488  mulog2sumlem2  27503  log2sumbnd  27512  logdivbnd  27524  pntlemk  27574  minvecolem4  30866  minvecolem5  30867  minvecolem6  30868  normpyc  31132  pjhthlem1  31377  chscllem2  31624  pjssposi  32158  cos9thpiminplylem1  33821  areacirclem2  37738  areacirclem4  37740  areacirclem5  37741  areacirc  37742  cntotbnd  37825  rrndstprj1  37859  pell1qrge1  42868  pell1qrgaplem  42871  pell14qrgapw  42874  pellqrex  42877
  Copyright terms: Public domain W3C validator