MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemh Structured version   Visualization version   GIF version

Theorem pntlemh 27557
Description: Lemma for pnt 27572. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemh ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐽(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemh
StepHypRef Expression
1 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
21simpld 494 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ+)
32adantr 480 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 ∈ ℝ+)
43relogcld 26579 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) ∈ ℝ)
5 pntlem1.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
6 pntlem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
7 pntlem1.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
8 pntlem1.l . . . . . . . . . . . 12 (𝜑𝐿 ∈ (0(,)1))
9 pntlem1.d . . . . . . . . . . . 12 𝐷 = (𝐴 + 1)
10 pntlem1.f . . . . . . . . . . . 12 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
11 pntlem1.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℝ+)
12 pntlem1.u2 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
13 pntlem1.e . . . . . . . . . . . 12 𝐸 = (𝑈 / 𝐷)
14 pntlem1.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / 𝐸))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlemc 27553 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1615simp2d 1143 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ+)
1716rpred 12940 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
1815simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1918simp2d 1143 . . . . . . . . 9 (𝜑 → 1 < 𝐾)
2017, 19rplogcld 26585 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ+)
2120adantr 480 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ+)
224, 21rerpdivcld 12971 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
23 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
27 pntlem1.m . . . . . . . . . 10 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
28 pntlem1.n . . . . . . . . . 10 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
295, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26, 27, 28pntlemg 27556 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
3029simp1d 1142 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3130adantr 480 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ)
3231nnred 12151 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
33 elfzuz 13427 . . . . . . . 8 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
34 eluznn 12822 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
3530, 33, 34syl2an 596 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℕ)
3635nnred 12151 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℝ)
37 flltp1 13711 . . . . . . . 8 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3822, 37syl 17 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3938, 27breqtrrdi 5137 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝑀)
40 elfzle1 13434 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝑀𝐽)
4140adantl 481 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀𝐽)
4222, 32, 36, 39, 41ltletrd 11284 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝐽)
434, 36, 21ltdivmul2d 12992 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑋) / (log‘𝐾)) < 𝐽 ↔ (log‘𝑋) < (𝐽 · (log‘𝐾))))
4442, 43mpbid 232 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (𝐽 · (log‘𝐾)))
4516adantr 480 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ+)
46 elfzelz 13431 . . . . . 6 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ ℤ)
4746adantl 481 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℤ)
48 relogexp 26552 . . . . 5 ((𝐾 ∈ ℝ+𝐽 ∈ ℤ) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
4945, 47, 48syl2anc 584 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
5044, 49breqtrrd 5123 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (log‘(𝐾𝐽)))
5145, 47rpexpcld 14161 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ∈ ℝ+)
52 logltb 26556 . . . 4 ((𝑋 ∈ ℝ+ ∧ (𝐾𝐽) ∈ ℝ+) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
533, 51, 52syl2anc 584 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
5450, 53mpbird 257 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 < (𝐾𝐽))
5549oveq2d 7371 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · (log‘(𝐾𝐽))) = (2 · (𝐽 · (log‘𝐾))))
56 2z 12514 . . . . . . . 8 2 ∈ ℤ
57 relogexp 26552 . . . . . . . 8 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
5851, 56, 57sylancl 586 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
59 2cnd 12214 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℂ)
6036recnd 11151 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℂ)
6145relogcld 26579 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ)
6261recnd 11151 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℂ)
6359, 60, 62mulassd 11146 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) = (2 · (𝐽 · (log‘𝐾))))
6455, 58, 633eqtr4d 2778 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = ((2 · 𝐽) · (log‘𝐾)))
65 elfzle2 13435 . . . . . . . . . . 11 (𝐽 ∈ (𝑀...𝑁) → 𝐽𝑁)
6665adantl 481 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽𝑁)
6766, 28breqtrdi 5136 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)))
685, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26pntlemb 27555 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
6968simp1d 1142 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ ℝ+)
7069adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑍 ∈ ℝ+)
7170relogcld 26579 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑍) ∈ ℝ)
7271, 21rerpdivcld 12971 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
7372rehalfcld 12379 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
74 flge 13716 . . . . . . . . . 10 (((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ ∧ 𝐽 ∈ ℤ) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7573, 47, 74syl2anc 584 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7667, 75mpbird 257 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
77 2re 12210 . . . . . . . . . 10 2 ∈ ℝ
7877a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℝ)
79 2pos 12239 . . . . . . . . . 10 0 < 2
8079a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 0 < 2)
81 lemuldiv2 12014 . . . . . . . . 9 ((𝐽 ∈ ℝ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8236, 72, 78, 80, 81syl112anc 1376 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8376, 82mpbird 257 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)))
84 remulcl 11102 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (2 · 𝐽) ∈ ℝ)
8577, 36, 84sylancr 587 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ∈ ℝ)
8685, 71, 21lemuldivd 12989 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍) ↔ (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾))))
8783, 86mpbird 257 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍))
8864, 87eqbrtrd 5117 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍))
89 rpexpcl 13994 . . . . . . 7 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝐾𝐽)↑2) ∈ ℝ+)
9051, 56, 89sylancl 586 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ∈ ℝ+)
9190, 70logled 26583 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((𝐾𝐽)↑2) ≤ 𝑍 ↔ (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍)))
9288, 91mpbird 257 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ 𝑍)
9370rprege0d 12947 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
94 resqrtth 15169 . . . . 5 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
9593, 94syl 17 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍)↑2) = 𝑍)
9692, 95breqtrrd 5123 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2))
9751rprege0d 12947 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)))
9870rpsqrtcld 15326 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (√‘𝑍) ∈ ℝ+)
9998rprege0d 12947 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
100 le2sq 14048 . . . 4 ((((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10197, 99, 100syl2anc 584 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10296, 101mpbird 257 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ≤ (√‘𝑍))
10354, 102jca 511 1 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  +∞cpnf 11154   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  2c2 12191  3c3 12192  4c4 12193  cz 12479  cdc 12598  cuz 12742  +crp 12896  (,)cioo 13252  [,)cico 13254  ...cfz 13414  cfl 13701  cexp 13975  csqrt 15147  expce 15975  eceu 15976  logclog 26510  ψcchp 27050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-e 15982  df-sin 15983  df-cos 15984  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-log 26512
This theorem is referenced by:  pntlemr  27560  pntlemj  27561  pntlemi  27562  pntlemf  27563
  Copyright terms: Public domain W3C validator