MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemh Structured version   Visualization version   GIF version

Theorem pntlemh 26652
Description: Lemma for pnt 26667. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemh ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐽(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemh
StepHypRef Expression
1 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
21simpld 494 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ+)
32adantr 480 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 ∈ ℝ+)
43relogcld 25683 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) ∈ ℝ)
5 pntlem1.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
6 pntlem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
7 pntlem1.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
8 pntlem1.l . . . . . . . . . . . 12 (𝜑𝐿 ∈ (0(,)1))
9 pntlem1.d . . . . . . . . . . . 12 𝐷 = (𝐴 + 1)
10 pntlem1.f . . . . . . . . . . . 12 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
11 pntlem1.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℝ+)
12 pntlem1.u2 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
13 pntlem1.e . . . . . . . . . . . 12 𝐸 = (𝑈 / 𝐷)
14 pntlem1.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / 𝐸))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlemc 26648 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1615simp2d 1141 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ+)
1716rpred 12701 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
1815simp3d 1142 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1918simp2d 1141 . . . . . . . . 9 (𝜑 → 1 < 𝐾)
2017, 19rplogcld 25689 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ+)
2120adantr 480 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ+)
224, 21rerpdivcld 12732 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
23 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
27 pntlem1.m . . . . . . . . . 10 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
28 pntlem1.n . . . . . . . . . 10 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
295, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26, 27, 28pntlemg 26651 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
3029simp1d 1140 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3130adantr 480 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ)
3231nnred 11918 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
33 elfzuz 13181 . . . . . . . 8 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
34 eluznn 12587 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
3530, 33, 34syl2an 595 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℕ)
3635nnred 11918 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℝ)
37 flltp1 13448 . . . . . . . 8 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3822, 37syl 17 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3938, 27breqtrrdi 5112 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝑀)
40 elfzle1 13188 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝑀𝐽)
4140adantl 481 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀𝐽)
4222, 32, 36, 39, 41ltletrd 11065 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝐽)
434, 36, 21ltdivmul2d 12753 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑋) / (log‘𝐾)) < 𝐽 ↔ (log‘𝑋) < (𝐽 · (log‘𝐾))))
4442, 43mpbid 231 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (𝐽 · (log‘𝐾)))
4516adantr 480 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ+)
46 elfzelz 13185 . . . . . 6 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ ℤ)
4746adantl 481 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℤ)
48 relogexp 25656 . . . . 5 ((𝐾 ∈ ℝ+𝐽 ∈ ℤ) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
4945, 47, 48syl2anc 583 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
5044, 49breqtrrd 5098 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (log‘(𝐾𝐽)))
5145, 47rpexpcld 13890 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ∈ ℝ+)
52 logltb 25660 . . . 4 ((𝑋 ∈ ℝ+ ∧ (𝐾𝐽) ∈ ℝ+) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
533, 51, 52syl2anc 583 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
5450, 53mpbird 256 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 < (𝐾𝐽))
5549oveq2d 7271 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · (log‘(𝐾𝐽))) = (2 · (𝐽 · (log‘𝐾))))
56 2z 12282 . . . . . . . 8 2 ∈ ℤ
57 relogexp 25656 . . . . . . . 8 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
5851, 56, 57sylancl 585 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
59 2cnd 11981 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℂ)
6036recnd 10934 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℂ)
6145relogcld 25683 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ)
6261recnd 10934 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℂ)
6359, 60, 62mulassd 10929 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) = (2 · (𝐽 · (log‘𝐾))))
6455, 58, 633eqtr4d 2788 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = ((2 · 𝐽) · (log‘𝐾)))
65 elfzle2 13189 . . . . . . . . . . 11 (𝐽 ∈ (𝑀...𝑁) → 𝐽𝑁)
6665adantl 481 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽𝑁)
6766, 28breqtrdi 5111 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)))
685, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26pntlemb 26650 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
6968simp1d 1140 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ ℝ+)
7069adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑍 ∈ ℝ+)
7170relogcld 25683 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑍) ∈ ℝ)
7271, 21rerpdivcld 12732 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
7372rehalfcld 12150 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
74 flge 13453 . . . . . . . . . 10 (((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ ∧ 𝐽 ∈ ℤ) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7573, 47, 74syl2anc 583 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7667, 75mpbird 256 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
77 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
7877a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℝ)
79 2pos 12006 . . . . . . . . . 10 0 < 2
8079a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 0 < 2)
81 lemuldiv2 11786 . . . . . . . . 9 ((𝐽 ∈ ℝ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8236, 72, 78, 80, 81syl112anc 1372 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8376, 82mpbird 256 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)))
84 remulcl 10887 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (2 · 𝐽) ∈ ℝ)
8577, 36, 84sylancr 586 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ∈ ℝ)
8685, 71, 21lemuldivd 12750 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍) ↔ (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾))))
8783, 86mpbird 256 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍))
8864, 87eqbrtrd 5092 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍))
89 rpexpcl 13729 . . . . . . 7 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝐾𝐽)↑2) ∈ ℝ+)
9051, 56, 89sylancl 585 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ∈ ℝ+)
9190, 70logled 25687 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((𝐾𝐽)↑2) ≤ 𝑍 ↔ (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍)))
9288, 91mpbird 256 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ 𝑍)
9370rprege0d 12708 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
94 resqrtth 14895 . . . . 5 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
9593, 94syl 17 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍)↑2) = 𝑍)
9692, 95breqtrrd 5098 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2))
9751rprege0d 12708 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)))
9870rpsqrtcld 15051 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (√‘𝑍) ∈ ℝ+)
9998rprege0d 12708 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
100 le2sq 13781 . . . 4 ((((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10197, 99, 100syl2anc 583 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10296, 101mpbird 256 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ≤ (√‘𝑍))
10354, 102jca 511 1 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  cz 12249  cdc 12366  cuz 12511  +crp 12659  (,)cioo 13008  [,)cico 13010  ...cfz 13168  cfl 13438  cexp 13710  csqrt 14872  expce 15699  eceu 15700  logclog 25615  ψcchp 26147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617
This theorem is referenced by:  pntlemr  26655  pntlemj  26656  pntlemi  26657  pntlemf  26658
  Copyright terms: Public domain W3C validator