MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemh Structured version   Visualization version   GIF version

Theorem pntlemh 26175
Description: Lemma for pnt 26190. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemh ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐽(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemh
StepHypRef Expression
1 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
21simpld 497 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ+)
32adantr 483 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 ∈ ℝ+)
43relogcld 25206 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) ∈ ℝ)
5 pntlem1.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
6 pntlem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
7 pntlem1.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
8 pntlem1.l . . . . . . . . . . . 12 (𝜑𝐿 ∈ (0(,)1))
9 pntlem1.d . . . . . . . . . . . 12 𝐷 = (𝐴 + 1)
10 pntlem1.f . . . . . . . . . . . 12 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
11 pntlem1.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℝ+)
12 pntlem1.u2 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
13 pntlem1.e . . . . . . . . . . . 12 𝐸 = (𝑈 / 𝐷)
14 pntlem1.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / 𝐸))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlemc 26171 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1615simp2d 1139 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ+)
1716rpred 12432 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
1815simp3d 1140 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1918simp2d 1139 . . . . . . . . 9 (𝜑 → 1 < 𝐾)
2017, 19rplogcld 25212 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ+)
2120adantr 483 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ+)
224, 21rerpdivcld 12463 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
23 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
27 pntlem1.m . . . . . . . . . 10 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
28 pntlem1.n . . . . . . . . . 10 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
295, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26, 27, 28pntlemg 26174 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
3029simp1d 1138 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3130adantr 483 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ)
3231nnred 11653 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
33 elfzuz 12905 . . . . . . . 8 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
34 eluznn 12319 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
3530, 33, 34syl2an 597 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℕ)
3635nnred 11653 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℝ)
37 flltp1 13171 . . . . . . . 8 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3822, 37syl 17 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3938, 27breqtrrdi 5108 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝑀)
40 elfzle1 12911 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝑀𝐽)
4140adantl 484 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀𝐽)
4222, 32, 36, 39, 41ltletrd 10800 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝐽)
434, 36, 21ltdivmul2d 12484 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑋) / (log‘𝐾)) < 𝐽 ↔ (log‘𝑋) < (𝐽 · (log‘𝐾))))
4442, 43mpbid 234 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (𝐽 · (log‘𝐾)))
4516adantr 483 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ+)
46 elfzelz 12909 . . . . . 6 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ ℤ)
4746adantl 484 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℤ)
48 relogexp 25179 . . . . 5 ((𝐾 ∈ ℝ+𝐽 ∈ ℤ) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
4945, 47, 48syl2anc 586 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
5044, 49breqtrrd 5094 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (log‘(𝐾𝐽)))
5145, 47rpexpcld 13609 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ∈ ℝ+)
52 logltb 25183 . . . 4 ((𝑋 ∈ ℝ+ ∧ (𝐾𝐽) ∈ ℝ+) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
533, 51, 52syl2anc 586 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
5450, 53mpbird 259 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 < (𝐾𝐽))
5549oveq2d 7172 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · (log‘(𝐾𝐽))) = (2 · (𝐽 · (log‘𝐾))))
56 2z 12015 . . . . . . . 8 2 ∈ ℤ
57 relogexp 25179 . . . . . . . 8 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
5851, 56, 57sylancl 588 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
59 2cnd 11716 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℂ)
6036recnd 10669 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℂ)
6145relogcld 25206 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ)
6261recnd 10669 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℂ)
6359, 60, 62mulassd 10664 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) = (2 · (𝐽 · (log‘𝐾))))
6455, 58, 633eqtr4d 2866 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = ((2 · 𝐽) · (log‘𝐾)))
65 elfzle2 12912 . . . . . . . . . . 11 (𝐽 ∈ (𝑀...𝑁) → 𝐽𝑁)
6665adantl 484 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽𝑁)
6766, 28breqtrdi 5107 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)))
685, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26pntlemb 26173 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
6968simp1d 1138 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ ℝ+)
7069adantr 483 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑍 ∈ ℝ+)
7170relogcld 25206 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑍) ∈ ℝ)
7271, 21rerpdivcld 12463 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
7372rehalfcld 11885 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
74 flge 13176 . . . . . . . . . 10 (((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ ∧ 𝐽 ∈ ℤ) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7573, 47, 74syl2anc 586 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7667, 75mpbird 259 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
77 2re 11712 . . . . . . . . . 10 2 ∈ ℝ
7877a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℝ)
79 2pos 11741 . . . . . . . . . 10 0 < 2
8079a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 0 < 2)
81 lemuldiv2 11521 . . . . . . . . 9 ((𝐽 ∈ ℝ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8236, 72, 78, 80, 81syl112anc 1370 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8376, 82mpbird 259 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)))
84 remulcl 10622 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (2 · 𝐽) ∈ ℝ)
8577, 36, 84sylancr 589 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ∈ ℝ)
8685, 71, 21lemuldivd 12481 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍) ↔ (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾))))
8783, 86mpbird 259 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍))
8864, 87eqbrtrd 5088 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍))
89 rpexpcl 13449 . . . . . . 7 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝐾𝐽)↑2) ∈ ℝ+)
9051, 56, 89sylancl 588 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ∈ ℝ+)
9190, 70logled 25210 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((𝐾𝐽)↑2) ≤ 𝑍 ↔ (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍)))
9288, 91mpbird 259 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ 𝑍)
9370rprege0d 12439 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
94 resqrtth 14615 . . . . 5 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
9593, 94syl 17 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍)↑2) = 𝑍)
9692, 95breqtrrd 5094 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2))
9751rprege0d 12439 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)))
9870rpsqrtcld 14771 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (√‘𝑍) ∈ ℝ+)
9998rprege0d 12439 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
100 le2sq 13500 . . . 4 ((((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10197, 99, 100syl2anc 586 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10296, 101mpbird 259 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ≤ (√‘𝑍))
10354, 102jca 514 1 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  4c4 11695  cz 11982  cdc 12099  cuz 12244  +crp 12390  (,)cioo 12739  [,)cico 12741  ...cfz 12893  cfl 13161  cexp 13430  csqrt 14592  expce 15415  eceu 15416  logclog 25138  ψcchp 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-e 15422  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140
This theorem is referenced by:  pntlemr  26178  pntlemj  26179  pntlemi  26180  pntlemf  26181
  Copyright terms: Public domain W3C validator