Proof of Theorem pntlemh
Step | Hyp | Ref
| Expression |
1 | | pntlem1.x |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
2 | 1 | simpld 498 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
3 | 2 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝑋 ∈
ℝ+) |
4 | 3 | relogcld 25326 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) ∈ ℝ) |
5 | | pntlem1.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
6 | | pntlem1.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
7 | | pntlem1.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
8 | | pntlem1.l |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
9 | | pntlem1.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (𝐴 + 1) |
10 | | pntlem1.f |
. . . . . . . . . . . 12
⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
11 | | pntlem1.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈
ℝ+) |
12 | | pntlem1.u2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ≤ 𝐴) |
13 | | pntlem1.e |
. . . . . . . . . . . 12
⊢ 𝐸 = (𝑈 / 𝐷) |
14 | | pntlem1.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
15 | 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 | pntlemc 26291 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+
∧ (𝐸 ∈ (0(,)1)
∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+))) |
16 | 15 | simp2d 1140 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℝ+) |
17 | 16 | rpred 12485 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℝ) |
18 | 15 | simp3d 1141 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+)) |
19 | 18 | simp2d 1140 |
. . . . . . . . 9
⊢ (𝜑 → 1 < 𝐾) |
20 | 17, 19 | rplogcld 25332 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝐾) ∈
ℝ+) |
21 | 20 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈
ℝ+) |
22 | 4, 21 | rerpdivcld 12516 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ) |
23 | | pntlem1.y |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤
𝑌)) |
24 | | pntlem1.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
25 | | pntlem1.w |
. . . . . . . . . 10
⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
26 | | pntlem1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) |
27 | | pntlem1.m |
. . . . . . . . . 10
⊢ 𝑀 =
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) |
28 | | pntlem1.n |
. . . . . . . . . 10
⊢ 𝑁 =
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) |
29 | 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 23, 1, 24, 25, 26, 27, 28 | pntlemg 26294 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) |
30 | 29 | simp1d 1139 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
31 | 30 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ) |
32 | 31 | nnred 11702 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ) |
33 | | elfzuz 12965 |
. . . . . . . 8
⊢ (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ≥‘𝑀)) |
34 | | eluznn 12371 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐽 ∈
(ℤ≥‘𝑀)) → 𝐽 ∈ ℕ) |
35 | 30, 33, 34 | syl2an 598 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℕ) |
36 | 35 | nnred 11702 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℝ) |
37 | | flltp1 13232 |
. . . . . . . 8
⊢
(((log‘𝑋) /
(log‘𝐾)) ∈
ℝ → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)) |
38 | 22, 37 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)) |
39 | 38, 27 | breqtrrdi 5078 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝑀) |
40 | | elfzle1 12972 |
. . . . . . 7
⊢ (𝐽 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐽) |
41 | 40 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝐽) |
42 | 22, 32, 36, 39, 41 | ltletrd 10851 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝐽) |
43 | 4, 36, 21 | ltdivmul2d 12537 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑋) / (log‘𝐾)) < 𝐽 ↔ (log‘𝑋) < (𝐽 · (log‘𝐾)))) |
44 | 42, 43 | mpbid 235 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (𝐽 · (log‘𝐾))) |
45 | 16 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝐾 ∈
ℝ+) |
46 | | elfzelz 12969 |
. . . . . 6
⊢ (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ ℤ) |
47 | 46 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℤ) |
48 | | relogexp 25299 |
. . . . 5
⊢ ((𝐾 ∈ ℝ+
∧ 𝐽 ∈ ℤ)
→ (log‘(𝐾↑𝐽)) = (𝐽 · (log‘𝐾))) |
49 | 45, 47, 48 | syl2anc 587 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘(𝐾↑𝐽)) = (𝐽 · (log‘𝐾))) |
50 | 44, 49 | breqtrrd 5064 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (log‘(𝐾↑𝐽))) |
51 | 45, 47 | rpexpcld 13671 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝐾↑𝐽) ∈
ℝ+) |
52 | | logltb 25303 |
. . . 4
⊢ ((𝑋 ∈ ℝ+
∧ (𝐾↑𝐽) ∈ ℝ+)
→ (𝑋 < (𝐾↑𝐽) ↔ (log‘𝑋) < (log‘(𝐾↑𝐽)))) |
53 | 3, 51, 52 | syl2anc 587 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑𝐽) ↔ (log‘𝑋) < (log‘(𝐾↑𝐽)))) |
54 | 50, 53 | mpbird 260 |
. 2
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝑋 < (𝐾↑𝐽)) |
55 | 49 | oveq2d 7172 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (2 · (log‘(𝐾↑𝐽))) = (2 · (𝐽 · (log‘𝐾)))) |
56 | | 2z 12066 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
57 | | relogexp 25299 |
. . . . . . . 8
⊢ (((𝐾↑𝐽) ∈ ℝ+ ∧ 2 ∈
ℤ) → (log‘((𝐾↑𝐽)↑2)) = (2 · (log‘(𝐾↑𝐽)))) |
58 | 51, 56, 57 | sylancl 589 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾↑𝐽)↑2)) = (2 · (log‘(𝐾↑𝐽)))) |
59 | | 2cnd 11765 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℂ) |
60 | 36 | recnd 10720 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℂ) |
61 | 45 | relogcld 25326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ) |
62 | 61 | recnd 10720 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℂ) |
63 | 59, 60, 62 | mulassd 10715 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) = (2 · (𝐽 · (log‘𝐾)))) |
64 | 55, 58, 63 | 3eqtr4d 2803 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾↑𝐽)↑2)) = ((2 · 𝐽) · (log‘𝐾))) |
65 | | elfzle2 12973 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (𝑀...𝑁) → 𝐽 ≤ 𝑁) |
66 | 65 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ 𝑁) |
67 | 66, 28 | breqtrdi 5077 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))) |
68 | 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 23, 1, 24, 25, 26 | pntlemb 26293 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 <
𝑍 ∧ e ≤
(√‘𝑍) ∧
(√‘𝑍) ≤
(𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
69 | 68 | simp1d 1139 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 ∈
ℝ+) |
70 | 69 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝑍 ∈
ℝ+) |
71 | 70 | relogcld 25326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘𝑍) ∈ ℝ) |
72 | 71, 21 | rerpdivcld 12516 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ) |
73 | 72 | rehalfcld 11934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ) |
74 | | flge 13237 |
. . . . . . . . . 10
⊢
(((((log‘𝑍) /
(log‘𝐾)) / 2) ∈
ℝ ∧ 𝐽 ∈
ℤ) → (𝐽 ≤
(((log‘𝑍) /
(log‘𝐾)) / 2) ↔
𝐽 ≤
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)))) |
75 | 73, 47, 74 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)))) |
76 | 67, 75 | mpbird 260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)) |
77 | | 2re 11761 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
78 | 77 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℝ) |
79 | | 2pos 11790 |
. . . . . . . . . 10
⊢ 0 <
2 |
80 | 79 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → 0 < 2) |
81 | | lemuldiv2 11572 |
. . . . . . . . 9
⊢ ((𝐽 ∈ ℝ ∧
((log‘𝑍) /
(log‘𝐾)) ∈
ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2))) |
82 | 36, 72, 78, 80, 81 | syl112anc 1371 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2))) |
83 | 76, 82 | mpbird 260 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾))) |
84 | | remulcl 10673 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ 𝐽
∈ ℝ) → (2 · 𝐽) ∈ ℝ) |
85 | 77, 36, 84 | sylancr 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ∈ ℝ) |
86 | 85, 71, 21 | lemuldivd 12534 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍) ↔ (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)))) |
87 | 83, 86 | mpbird 260 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍)) |
88 | 64, 87 | eqbrtrd 5058 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾↑𝐽)↑2)) ≤ (log‘𝑍)) |
89 | | rpexpcl 13511 |
. . . . . . 7
⊢ (((𝐾↑𝐽) ∈ ℝ+ ∧ 2 ∈
ℤ) → ((𝐾↑𝐽)↑2) ∈
ℝ+) |
90 | 51, 56, 89 | sylancl 589 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((𝐾↑𝐽)↑2) ∈
ℝ+) |
91 | 90, 70 | logled 25330 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (((𝐾↑𝐽)↑2) ≤ 𝑍 ↔ (log‘((𝐾↑𝐽)↑2)) ≤ (log‘𝑍))) |
92 | 88, 91 | mpbird 260 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((𝐾↑𝐽)↑2) ≤ 𝑍) |
93 | 70 | rprege0d 12492 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍)) |
94 | | resqrtth 14676 |
. . . . 5
⊢ ((𝑍 ∈ ℝ ∧ 0 ≤
𝑍) →
((√‘𝑍)↑2)
= 𝑍) |
95 | 93, 94 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍)↑2) = 𝑍) |
96 | 92, 95 | breqtrrd 5064 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((𝐾↑𝐽)↑2) ≤ ((√‘𝑍)↑2)) |
97 | 51 | rprege0d 12492 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((𝐾↑𝐽) ∈ ℝ ∧ 0 ≤ (𝐾↑𝐽))) |
98 | 70 | rpsqrtcld 14832 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (√‘𝑍) ∈
ℝ+) |
99 | 98 | rprege0d 12492 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍) ∈ ℝ ∧ 0 ≤
(√‘𝑍))) |
100 | | le2sq 13562 |
. . . 4
⊢ ((((𝐾↑𝐽) ∈ ℝ ∧ 0 ≤ (𝐾↑𝐽)) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤
(√‘𝑍))) →
((𝐾↑𝐽) ≤ (√‘𝑍) ↔ ((𝐾↑𝐽)↑2) ≤ ((√‘𝑍)↑2))) |
101 | 97, 99, 100 | syl2anc 587 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → ((𝐾↑𝐽) ≤ (√‘𝑍) ↔ ((𝐾↑𝐽)↑2) ≤ ((√‘𝑍)↑2))) |
102 | 96, 101 | mpbird 260 |
. 2
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝐾↑𝐽) ≤ (√‘𝑍)) |
103 | 54, 102 | jca 515 |
1
⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑𝐽) ∧ (𝐾↑𝐽) ≤ (√‘𝑍))) |