MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemh Structured version   Visualization version   GIF version

Theorem pntlemh 27527
Description: Lemma for pnt 27542. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemh ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐽(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemh
StepHypRef Expression
1 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
21simpld 494 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ+)
32adantr 480 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 ∈ ℝ+)
43relogcld 26549 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) ∈ ℝ)
5 pntlem1.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
6 pntlem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
7 pntlem1.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
8 pntlem1.l . . . . . . . . . . . 12 (𝜑𝐿 ∈ (0(,)1))
9 pntlem1.d . . . . . . . . . . . 12 𝐷 = (𝐴 + 1)
10 pntlem1.f . . . . . . . . . . . 12 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
11 pntlem1.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℝ+)
12 pntlem1.u2 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
13 pntlem1.e . . . . . . . . . . . 12 𝐸 = (𝑈 / 𝐷)
14 pntlem1.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / 𝐸))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlemc 27523 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1615simp2d 1143 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ+)
1716rpred 12956 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
1815simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1918simp2d 1143 . . . . . . . . 9 (𝜑 → 1 < 𝐾)
2017, 19rplogcld 26555 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ+)
2120adantr 480 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ+)
224, 21rerpdivcld 12987 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
23 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
27 pntlem1.m . . . . . . . . . 10 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
28 pntlem1.n . . . . . . . . . 10 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
295, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26, 27, 28pntlemg 27526 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
3029simp1d 1142 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3130adantr 480 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ)
3231nnred 12162 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
33 elfzuz 13442 . . . . . . . 8 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
34 eluznn 12838 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
3530, 33, 34syl2an 596 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℕ)
3635nnred 12162 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℝ)
37 flltp1 13723 . . . . . . . 8 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3822, 37syl 17 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3938, 27breqtrrdi 5137 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝑀)
40 elfzle1 13449 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝑀𝐽)
4140adantl 481 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀𝐽)
4222, 32, 36, 39, 41ltletrd 11295 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝐽)
434, 36, 21ltdivmul2d 13008 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑋) / (log‘𝐾)) < 𝐽 ↔ (log‘𝑋) < (𝐽 · (log‘𝐾))))
4442, 43mpbid 232 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (𝐽 · (log‘𝐾)))
4516adantr 480 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ+)
46 elfzelz 13446 . . . . . 6 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ ℤ)
4746adantl 481 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℤ)
48 relogexp 26522 . . . . 5 ((𝐾 ∈ ℝ+𝐽 ∈ ℤ) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
4945, 47, 48syl2anc 584 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
5044, 49breqtrrd 5123 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (log‘(𝐾𝐽)))
5145, 47rpexpcld 14173 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ∈ ℝ+)
52 logltb 26526 . . . 4 ((𝑋 ∈ ℝ+ ∧ (𝐾𝐽) ∈ ℝ+) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
533, 51, 52syl2anc 584 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
5450, 53mpbird 257 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 < (𝐾𝐽))
5549oveq2d 7369 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · (log‘(𝐾𝐽))) = (2 · (𝐽 · (log‘𝐾))))
56 2z 12526 . . . . . . . 8 2 ∈ ℤ
57 relogexp 26522 . . . . . . . 8 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
5851, 56, 57sylancl 586 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
59 2cnd 12225 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℂ)
6036recnd 11162 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℂ)
6145relogcld 26549 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ)
6261recnd 11162 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℂ)
6359, 60, 62mulassd 11157 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) = (2 · (𝐽 · (log‘𝐾))))
6455, 58, 633eqtr4d 2774 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = ((2 · 𝐽) · (log‘𝐾)))
65 elfzle2 13450 . . . . . . . . . . 11 (𝐽 ∈ (𝑀...𝑁) → 𝐽𝑁)
6665adantl 481 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽𝑁)
6766, 28breqtrdi 5136 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)))
685, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26pntlemb 27525 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
6968simp1d 1142 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ ℝ+)
7069adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑍 ∈ ℝ+)
7170relogcld 26549 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑍) ∈ ℝ)
7271, 21rerpdivcld 12987 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
7372rehalfcld 12390 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
74 flge 13728 . . . . . . . . . 10 (((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ ∧ 𝐽 ∈ ℤ) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7573, 47, 74syl2anc 584 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7667, 75mpbird 257 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
77 2re 12221 . . . . . . . . . 10 2 ∈ ℝ
7877a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℝ)
79 2pos 12250 . . . . . . . . . 10 0 < 2
8079a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 0 < 2)
81 lemuldiv2 12025 . . . . . . . . 9 ((𝐽 ∈ ℝ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8236, 72, 78, 80, 81syl112anc 1376 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8376, 82mpbird 257 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)))
84 remulcl 11113 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (2 · 𝐽) ∈ ℝ)
8577, 36, 84sylancr 587 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ∈ ℝ)
8685, 71, 21lemuldivd 13005 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍) ↔ (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾))))
8783, 86mpbird 257 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍))
8864, 87eqbrtrd 5117 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍))
89 rpexpcl 14006 . . . . . . 7 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝐾𝐽)↑2) ∈ ℝ+)
9051, 56, 89sylancl 586 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ∈ ℝ+)
9190, 70logled 26553 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((𝐾𝐽)↑2) ≤ 𝑍 ↔ (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍)))
9288, 91mpbird 257 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ 𝑍)
9370rprege0d 12963 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
94 resqrtth 15181 . . . . 5 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
9593, 94syl 17 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍)↑2) = 𝑍)
9692, 95breqtrrd 5123 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2))
9751rprege0d 12963 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)))
9870rpsqrtcld 15338 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (√‘𝑍) ∈ ℝ+)
9998rprege0d 12963 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
100 le2sq 14060 . . . 4 ((((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10197, 99, 100syl2anc 584 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10296, 101mpbird 257 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ≤ (√‘𝑍))
10354, 102jca 511 1 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165   < clt 11168  cle 11169  cmin 11366   / cdiv 11796  cn 12147  2c2 12202  3c3 12203  4c4 12204  cz 12490  cdc 12610  cuz 12754  +crp 12912  (,)cioo 13267  [,)cico 13269  ...cfz 13429  cfl 13713  cexp 13987  csqrt 15159  expce 15987  eceu 15988  logclog 26480  ψcchp 27020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-ef 15993  df-e 15994  df-sin 15995  df-cos 15996  df-pi 15998  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785  df-log 26482
This theorem is referenced by:  pntlemr  27530  pntlemj  27531  pntlemi  27532  pntlemf  27533
  Copyright terms: Public domain W3C validator