Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq2 Structured version   Visualization version   GIF version

Theorem mapdheq2 41838
Description: Lemmma for ~? mapdh . One direction of part (2) in [Baer] p. 45. (Contributed by NM, 4-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdhe.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe.g (𝜑𝐺𝐷)
mapdh.ne2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
mapdheq2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdheq2
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0g𝐶)
2 mapdh.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . . 3 𝐻 = (LHyp‘𝐾)
4 mapdh.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . . 3 𝑉 = (Base‘𝑈)
7 mapdh.s . . 3 = (-g𝑈)
8 mapdhc.o . . 3 0 = (0g𝑈)
9 mapdh.n . . 3 𝑁 = (LSpan‘𝑈)
10 mapdh.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . . 3 𝐷 = (Base‘𝐶)
12 mapdh.r . . 3 𝑅 = (-g𝐶)
13 mapdh.j . . 3 𝐽 = (LSpan‘𝐶)
14 mapdh.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdhc.f . . 3 (𝜑𝐹𝐷)
16 mapdh.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdhcl.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 mapdhe.y . . 3 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
19 mapdhe.g . . 3 (𝜑𝐺𝐷)
20 mapdh.ne2 . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20mapdheq 41837 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
2216adantr 480 . . . 4 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
233, 5, 14dvhlmod 41219 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
2417eldifad 3911 . . . . . . . . 9 (𝜑𝑋𝑉)
2518eldifad 3911 . . . . . . . . 9 (𝜑𝑌𝑉)
266, 7, 9, 23, 24, 25lspsnsub 20950 . . . . . . . 8 (𝜑 → (𝑁‘{(𝑋 𝑌)}) = (𝑁‘{(𝑌 𝑋)}))
2726fveq2d 6835 . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝑀‘(𝑁‘{(𝑌 𝑋)})))
283, 10, 14lcdlmod 41701 . . . . . . . 8 (𝜑𝐶 ∈ LMod)
2911, 12, 13, 28, 15, 19lspsnsub 20950 . . . . . . 7 (𝜑 → (𝐽‘{(𝐹𝑅𝐺)}) = (𝐽‘{(𝐺𝑅𝐹)}))
3027, 29eqeq12d 2749 . . . . . 6 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}) ↔ (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)})))
3130biimpa 476 . . . . 5 ((𝜑 ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) → (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))
3231adantrl 716 . . . 4 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))
3314adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3419adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝐺𝐷)
35 simprl 770 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
3618adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
3717adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3815adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝐹𝐷)
3920necomd 2985 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋}))
4039adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋}))
411, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 33, 34, 35, 36, 37, 38, 40mapdheq 41837 . . . 4 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → ((𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹 ↔ ((𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}) ∧ (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))))
4222, 32, 41mpbir2and 713 . . 3 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹)
4342ex 412 . 2 (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹))
4421, 43sylbid 240 1 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930  Vcvv 3438  cdif 3896  ifcif 4476  {csn 4577  cotp 4585  cmpt 5176  cfv 6489  crio 7311  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Basecbs 17130  0gc0g 17353  -gcsg 18858  LSpanclspn 20914  HLchlt 39459  LHypclh 40093  DVecHcdvh 41187  LCDualclcd 41695  mapdcmpd 41733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-undef 8212  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-sca 17187  df-vsca 17188  df-0g 17355  df-mre 17498  df-mrc 17499  df-acs 17501  df-proset 18210  df-poset 18229  df-plt 18244  df-lub 18260  df-glb 18261  df-join 18262  df-meet 18263  df-p0 18339  df-p1 18340  df-lat 18348  df-clat 18415  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19046  df-cntz 19239  df-oppg 19268  df-lsm 19558  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-nzr 20438  df-rlreg 20619  df-domn 20620  df-drng 20656  df-lmod 20805  df-lss 20875  df-lsp 20915  df-lvec 21047  df-lsatoms 39085  df-lshyp 39086  df-lcv 39128  df-lfl 39167  df-lkr 39195  df-ldual 39233  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-tgrp 40852  df-tendo 40864  df-edring 40866  df-dveca 41112  df-disoa 41138  df-dvech 41188  df-dib 41248  df-dic 41282  df-dih 41338  df-doch 41457  df-djh 41504  df-lcdual 41696  df-mapd 41734
This theorem is referenced by:  mapdheq2biN  41839  mapdh7eN  41857  mapdh7cN  41858  mapdh7fN  41860  mapdh75e  41861
  Copyright terms: Public domain W3C validator