Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq2 Structured version   Visualization version   GIF version

Theorem mapdheq2 41747
Description: Lemmma for ~? mapdh . One direction of part (2) in [Baer] p. 45. (Contributed by NM, 4-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdhe.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe.g (𝜑𝐺𝐷)
mapdh.ne2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
mapdheq2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdheq2
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0g𝐶)
2 mapdh.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . . 3 𝐻 = (LHyp‘𝐾)
4 mapdh.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . . 3 𝑉 = (Base‘𝑈)
7 mapdh.s . . 3 = (-g𝑈)
8 mapdhc.o . . 3 0 = (0g𝑈)
9 mapdh.n . . 3 𝑁 = (LSpan‘𝑈)
10 mapdh.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . . 3 𝐷 = (Base‘𝐶)
12 mapdh.r . . 3 𝑅 = (-g𝐶)
13 mapdh.j . . 3 𝐽 = (LSpan‘𝐶)
14 mapdh.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdhc.f . . 3 (𝜑𝐹𝐷)
16 mapdh.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdhcl.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 mapdhe.y . . 3 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
19 mapdhe.g . . 3 (𝜑𝐺𝐷)
20 mapdh.ne2 . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20mapdheq 41746 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
2216adantr 480 . . . 4 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
233, 5, 14dvhlmod 41128 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
2417eldifad 3912 . . . . . . . . 9 (𝜑𝑋𝑉)
2518eldifad 3912 . . . . . . . . 9 (𝜑𝑌𝑉)
266, 7, 9, 23, 24, 25lspsnsub 20933 . . . . . . . 8 (𝜑 → (𝑁‘{(𝑋 𝑌)}) = (𝑁‘{(𝑌 𝑋)}))
2726fveq2d 6821 . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝑀‘(𝑁‘{(𝑌 𝑋)})))
283, 10, 14lcdlmod 41610 . . . . . . . 8 (𝜑𝐶 ∈ LMod)
2911, 12, 13, 28, 15, 19lspsnsub 20933 . . . . . . 7 (𝜑 → (𝐽‘{(𝐹𝑅𝐺)}) = (𝐽‘{(𝐺𝑅𝐹)}))
3027, 29eqeq12d 2746 . . . . . 6 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}) ↔ (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)})))
3130biimpa 476 . . . . 5 ((𝜑 ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) → (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))
3231adantrl 716 . . . 4 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))
3314adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3419adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝐺𝐷)
35 simprl 770 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
3618adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
3717adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3815adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝐹𝐷)
3920necomd 2981 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋}))
4039adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋}))
411, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 33, 34, 35, 36, 37, 38, 40mapdheq 41746 . . . 4 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → ((𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹 ↔ ((𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}) ∧ (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))))
4222, 32, 41mpbir2and 713 . . 3 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹)
4342ex 412 . 2 (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹))
4421, 43sylbid 240 1 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  Vcvv 3434  cdif 3897  ifcif 4473  {csn 4574  cotp 4582  cmpt 5170  cfv 6477  crio 7297  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Basecbs 17112  0gc0g 17335  -gcsg 18840  LSpanclspn 20897  HLchlt 39368  LHypclh 40002  DVecHcdvh 41096  LCDualclcd 41604  mapdcmpd 41642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-undef 8198  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-0g 17337  df-mre 17480  df-mrc 17481  df-acs 17483  df-proset 18192  df-poset 18211  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-p1 18322  df-lat 18330  df-clat 18397  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cntz 19222  df-oppg 19251  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-nzr 20421  df-rlreg 20602  df-domn 20603  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lvec 21030  df-lsatoms 38994  df-lshyp 38995  df-lcv 39037  df-lfl 39076  df-lkr 39104  df-ldual 39142  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39516  df-lplanes 39517  df-lvols 39518  df-lines 39519  df-psubsp 39521  df-pmap 39522  df-padd 39814  df-lhyp 40006  df-laut 40007  df-ldil 40122  df-ltrn 40123  df-trl 40177  df-tgrp 40761  df-tendo 40773  df-edring 40775  df-dveca 41021  df-disoa 41047  df-dvech 41097  df-dib 41157  df-dic 41191  df-dih 41247  df-doch 41366  df-djh 41413  df-lcdual 41605  df-mapd 41643
This theorem is referenced by:  mapdheq2biN  41748  mapdh7eN  41766  mapdh7cN  41767  mapdh7fN  41769  mapdh75e  41770
  Copyright terms: Public domain W3C validator