Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq2 Structured version   Visualization version   GIF version

Theorem mapdheq2 41730
Description: Lemmma for ~? mapdh . One direction of part (2) in [Baer] p. 45. (Contributed by NM, 4-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdhe.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe.g (𝜑𝐺𝐷)
mapdh.ne2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
mapdheq2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdheq2
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0g𝐶)
2 mapdh.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . . 3 𝐻 = (LHyp‘𝐾)
4 mapdh.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . . 3 𝑉 = (Base‘𝑈)
7 mapdh.s . . 3 = (-g𝑈)
8 mapdhc.o . . 3 0 = (0g𝑈)
9 mapdh.n . . 3 𝑁 = (LSpan‘𝑈)
10 mapdh.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . . 3 𝐷 = (Base‘𝐶)
12 mapdh.r . . 3 𝑅 = (-g𝐶)
13 mapdh.j . . 3 𝐽 = (LSpan‘𝐶)
14 mapdh.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdhc.f . . 3 (𝜑𝐹𝐷)
16 mapdh.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdhcl.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 mapdhe.y . . 3 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
19 mapdhe.g . . 3 (𝜑𝐺𝐷)
20 mapdh.ne2 . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20mapdheq 41729 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
2216adantr 480 . . . 4 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
233, 5, 14dvhlmod 41111 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
2417eldifad 3929 . . . . . . . . 9 (𝜑𝑋𝑉)
2518eldifad 3929 . . . . . . . . 9 (𝜑𝑌𝑉)
266, 7, 9, 23, 24, 25lspsnsub 20920 . . . . . . . 8 (𝜑 → (𝑁‘{(𝑋 𝑌)}) = (𝑁‘{(𝑌 𝑋)}))
2726fveq2d 6865 . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝑀‘(𝑁‘{(𝑌 𝑋)})))
283, 10, 14lcdlmod 41593 . . . . . . . 8 (𝜑𝐶 ∈ LMod)
2911, 12, 13, 28, 15, 19lspsnsub 20920 . . . . . . 7 (𝜑 → (𝐽‘{(𝐹𝑅𝐺)}) = (𝐽‘{(𝐺𝑅𝐹)}))
3027, 29eqeq12d 2746 . . . . . 6 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}) ↔ (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)})))
3130biimpa 476 . . . . 5 ((𝜑 ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) → (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))
3231adantrl 716 . . . 4 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))
3314adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3419adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝐺𝐷)
35 simprl 770 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
3618adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
3717adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3815adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝐹𝐷)
3920necomd 2981 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋}))
4039adantr 480 . . . . 5 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋}))
411, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 33, 34, 35, 36, 37, 38, 40mapdheq 41729 . . . 4 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → ((𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹 ↔ ((𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}) ∧ (𝑀‘(𝑁‘{(𝑌 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))))
4222, 32, 41mpbir2and 713 . . 3 ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹)
4342ex 412 . 2 (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹))
4421, 43sylbid 240 1 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3914  ifcif 4491  {csn 4592  cotp 4600  cmpt 5191  cfv 6514  crio 7346  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  0gc0g 17409  -gcsg 18874  LSpanclspn 20884  HLchlt 39350  LHypclh 39985  DVecHcdvh 41079  LCDualclcd 41587  mapdcmpd 41625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-lshyp 38977  df-lcv 39019  df-lfl 39058  df-lkr 39086  df-ldual 39124  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tgrp 40744  df-tendo 40756  df-edring 40758  df-dveca 41004  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230  df-doch 41349  df-djh 41396  df-lcdual 41588  df-mapd 41626
This theorem is referenced by:  mapdheq2biN  41731  mapdh7eN  41749  mapdh7cN  41750  mapdh7fN  41752  mapdh75e  41753
  Copyright terms: Public domain W3C validator