| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdheq2 | Structured version Visualization version GIF version | ||
| Description: Lemmma for ~? mapdh . One direction of part (2) in [Baer] p. 45. (Contributed by NM, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh.s | ⊢ − = (-g‘𝑈) |
| mapdhc.o | ⊢ 0 = (0g‘𝑈) |
| mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdhe.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdhe.g | ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
| mapdh.ne2 | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| mapdheq2 | ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 → (𝐼‘〈𝑌, 𝐺, 𝑋〉) = 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 3 | mapdh.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | mapdh.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 5 | mapdh.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | mapdh.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 7 | mapdh.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 8 | mapdhc.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 9 | mapdh.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 10 | mapdh.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 11 | mapdh.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 12 | mapdh.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 13 | mapdh.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 14 | mapdh.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdhc.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | mapdh.mn | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 17 | mapdhcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 18 | mapdhe.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 19 | mapdhe.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐷) | |
| 20 | mapdh.ne2 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | mapdheq 41752 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
| 22 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 23 | 3, 5, 14 | dvhlmod 41134 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 24 | 17 | eldifad 3943 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 25 | 18 | eldifad 3943 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 26 | 6, 7, 9, 23, 24, 25 | lspsnsub 20969 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑌 − 𝑋)})) |
| 27 | 26 | fveq2d 6885 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝑀‘(𝑁‘{(𝑌 − 𝑋)}))) |
| 28 | 3, 10, 14 | lcdlmod 41616 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 29 | 11, 12, 13, 28, 15, 19 | lspsnsub 20969 | . . . . . . 7 ⊢ (𝜑 → (𝐽‘{(𝐹𝑅𝐺)}) = (𝐽‘{(𝐺𝑅𝐹)})) |
| 30 | 27, 29 | eqeq12d 2752 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}) ↔ (𝑀‘(𝑁‘{(𝑌 − 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)}))) |
| 31 | 30 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) → (𝑀‘(𝑁‘{(𝑌 − 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)})) |
| 32 | 31 | adantrl 716 | . . . 4 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{(𝑌 − 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)})) |
| 33 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 34 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝐺 ∈ 𝐷) |
| 35 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) | |
| 36 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 37 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 38 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → 𝐹 ∈ 𝐷) |
| 39 | 20 | necomd 2988 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋})) |
| 40 | 39 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋})) |
| 41 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 33, 34, 35, 36, 37, 38, 40 | mapdheq 41752 | . . . 4 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → ((𝐼‘〈𝑌, 𝐺, 𝑋〉) = 𝐹 ↔ ((𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}) ∧ (𝑀‘(𝑁‘{(𝑌 − 𝑋)})) = (𝐽‘{(𝐺𝑅𝐹)})))) |
| 42 | 22, 32, 41 | mpbir2and 713 | . . 3 ⊢ ((𝜑 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) → (𝐼‘〈𝑌, 𝐺, 𝑋〉) = 𝐹) |
| 43 | 42 | ex 412 | . 2 ⊢ (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) → (𝐼‘〈𝑌, 𝐺, 𝑋〉) = 𝐹)) |
| 44 | 21, 43 | sylbid 240 | 1 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 → (𝐼‘〈𝑌, 𝐺, 𝑋〉) = 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∖ cdif 3928 ifcif 4505 {csn 4606 〈cotp 4614 ↦ cmpt 5206 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 Basecbs 17233 0gc0g 17458 -gcsg 18923 LSpanclspn 20933 HLchlt 39373 LHypclh 40008 DVecHcdvh 41102 LCDualclcd 41610 mapdcmpd 41648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-riotaBAD 38976 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-0g 17460 df-mre 17603 df-mrc 17604 df-acs 17606 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-oppg 19334 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-nzr 20478 df-rlreg 20659 df-domn 20660 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 df-lsatoms 38999 df-lshyp 39000 df-lcv 39042 df-lfl 39081 df-lkr 39109 df-ldual 39147 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-llines 39522 df-lplanes 39523 df-lvols 39524 df-lines 39525 df-psubsp 39527 df-pmap 39528 df-padd 39820 df-lhyp 40012 df-laut 40013 df-ldil 40128 df-ltrn 40129 df-trl 40183 df-tgrp 40767 df-tendo 40779 df-edring 40781 df-dveca 41027 df-disoa 41053 df-dvech 41103 df-dib 41163 df-dic 41197 df-dih 41253 df-doch 41372 df-djh 41419 df-lcdual 41611 df-mapd 41649 |
| This theorem is referenced by: mapdheq2biN 41754 mapdh7eN 41772 mapdh7cN 41773 mapdh7fN 41775 mapdh75e 41776 |
| Copyright terms: Public domain | W3C validator |