![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdheq2 | Structured version Visualization version GIF version |
Description: Lemmma for ~? mapdh . One direction of part (2) in [Baer] p. 45. (Contributed by NM, 4-Apr-2015.) |
Ref | Expression |
---|---|
mapdh.q | β’ π = (0gβπΆ) |
mapdh.i | β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) |
mapdh.h | β’ π» = (LHypβπΎ) |
mapdh.m | β’ π = ((mapdβπΎ)βπ) |
mapdh.u | β’ π = ((DVecHβπΎ)βπ) |
mapdh.v | β’ π = (Baseβπ) |
mapdh.s | β’ β = (-gβπ) |
mapdhc.o | β’ 0 = (0gβπ) |
mapdh.n | β’ π = (LSpanβπ) |
mapdh.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdh.d | β’ π· = (BaseβπΆ) |
mapdh.r | β’ π = (-gβπΆ) |
mapdh.j | β’ π½ = (LSpanβπΆ) |
mapdh.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdhc.f | β’ (π β πΉ β π·) |
mapdh.mn | β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) |
mapdhcl.x | β’ (π β π β (π β { 0 })) |
mapdhe.y | β’ (π β π β (π β { 0 })) |
mapdhe.g | β’ (π β πΊ β π·) |
mapdh.ne2 | β’ (π β (πβ{π}) β (πβ{π})) |
Ref | Expression |
---|---|
mapdheq2 | β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β (πΌββ¨π, πΊ, πβ©) = πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . 3 β’ π = (0gβπΆ) | |
2 | mapdh.i | . . 3 β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) | |
3 | mapdh.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | mapdh.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
5 | mapdh.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
6 | mapdh.v | . . 3 β’ π = (Baseβπ) | |
7 | mapdh.s | . . 3 β’ β = (-gβπ) | |
8 | mapdhc.o | . . 3 β’ 0 = (0gβπ) | |
9 | mapdh.n | . . 3 β’ π = (LSpanβπ) | |
10 | mapdh.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
11 | mapdh.d | . . 3 β’ π· = (BaseβπΆ) | |
12 | mapdh.r | . . 3 β’ π = (-gβπΆ) | |
13 | mapdh.j | . . 3 β’ π½ = (LSpanβπΆ) | |
14 | mapdh.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
15 | mapdhc.f | . . 3 β’ (π β πΉ β π·) | |
16 | mapdh.mn | . . 3 β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) | |
17 | mapdhcl.x | . . 3 β’ (π β π β (π β { 0 })) | |
18 | mapdhe.y | . . 3 β’ (π β π β (π β { 0 })) | |
19 | mapdhe.g | . . 3 β’ (π β πΊ β π·) | |
20 | mapdh.ne2 | . . 3 β’ (π β (πβ{π}) β (πβ{π})) | |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | mapdheq 41195 | . 2 β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)})))) |
22 | 16 | adantr 480 | . . . 4 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πβ(πβ{π})) = (π½β{πΉ})) |
23 | 3, 5, 14 | dvhlmod 40577 | . . . . . . . . 9 β’ (π β π β LMod) |
24 | 17 | eldifad 3957 | . . . . . . . . 9 β’ (π β π β π) |
25 | 18 | eldifad 3957 | . . . . . . . . 9 β’ (π β π β π) |
26 | 6, 7, 9, 23, 24, 25 | lspsnsub 20884 | . . . . . . . 8 β’ (π β (πβ{(π β π)}) = (πβ{(π β π)})) |
27 | 26 | fveq2d 6895 | . . . . . . 7 β’ (π β (πβ(πβ{(π β π)})) = (πβ(πβ{(π β π)}))) |
28 | 3, 10, 14 | lcdlmod 41059 | . . . . . . . 8 β’ (π β πΆ β LMod) |
29 | 11, 12, 13, 28, 15, 19 | lspsnsub 20884 | . . . . . . 7 β’ (π β (π½β{(πΉπ πΊ)}) = (π½β{(πΊπ πΉ)})) |
30 | 27, 29 | eqeq12d 2744 | . . . . . 6 β’ (π β ((πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}) β (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΉ)}))) |
31 | 30 | biimpa 476 | . . . . 5 β’ ((π β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)})) β (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΉ)})) |
32 | 31 | adantrl 715 | . . . 4 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΉ)})) |
33 | 14 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πΎ β HL β§ π β π»)) |
34 | 19 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β πΊ β π·) |
35 | simprl 770 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πβ(πβ{π})) = (π½β{πΊ})) | |
36 | 18 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β π β (π β { 0 })) |
37 | 17 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β π β (π β { 0 })) |
38 | 15 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β πΉ β π·) |
39 | 20 | necomd 2992 | . . . . . 6 β’ (π β (πβ{π}) β (πβ{π})) |
40 | 39 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πβ{π}) β (πβ{π})) |
41 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 33, 34, 35, 36, 37, 38, 40 | mapdheq 41195 | . . . 4 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β ((πΌββ¨π, πΊ, πβ©) = πΉ β ((πβ(πβ{π})) = (π½β{πΉ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΉ)})))) |
42 | 22, 32, 41 | mpbir2and 712 | . . 3 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πΌββ¨π, πΊ, πβ©) = πΉ) |
43 | 42 | ex 412 | . 2 β’ (π β (((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)})) β (πΌββ¨π, πΊ, πβ©) = πΉ)) |
44 | 21, 43 | sylbid 239 | 1 β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β (πΌββ¨π, πΊ, πβ©) = πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wne 2936 Vcvv 3470 β cdif 3942 ifcif 4524 {csn 4624 β¨cotp 4632 β¦ cmpt 5225 βcfv 6542 β©crio 7369 (class class class)co 7414 1st c1st 7985 2nd c2nd 7986 Basecbs 17173 0gc0g 17414 -gcsg 18885 LSpanclspn 20848 HLchlt 38816 LHypclh 39451 DVecHcdvh 40545 LCDualclcd 41053 mapdcmpd 41091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-riotaBAD 38419 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-undef 8272 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-0g 17416 df-mre 17559 df-mrc 17560 df-acs 17562 df-proset 18280 df-poset 18298 df-plt 18315 df-lub 18331 df-glb 18332 df-join 18333 df-meet 18334 df-p0 18410 df-p1 18411 df-lat 18417 df-clat 18484 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-subg 19071 df-cntz 19261 df-oppg 19290 df-lsm 19584 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-oppr 20266 df-dvdsr 20289 df-unit 20290 df-invr 20320 df-dvr 20333 df-drng 20619 df-lmod 20738 df-lss 20809 df-lsp 20849 df-lvec 20981 df-lsatoms 38442 df-lshyp 38443 df-lcv 38485 df-lfl 38524 df-lkr 38552 df-ldual 38590 df-oposet 38642 df-ol 38644 df-oml 38645 df-covers 38732 df-ats 38733 df-atl 38764 df-cvlat 38788 df-hlat 38817 df-llines 38965 df-lplanes 38966 df-lvols 38967 df-lines 38968 df-psubsp 38970 df-pmap 38971 df-padd 39263 df-lhyp 39455 df-laut 39456 df-ldil 39571 df-ltrn 39572 df-trl 39626 df-tgrp 40210 df-tendo 40222 df-edring 40224 df-dveca 40470 df-disoa 40496 df-dvech 40546 df-dib 40606 df-dic 40640 df-dih 40696 df-doch 40815 df-djh 40862 df-lcdual 41054 df-mapd 41092 |
This theorem is referenced by: mapdheq2biN 41197 mapdh7eN 41215 mapdh7cN 41216 mapdh7fN 41218 mapdh75e 41219 |
Copyright terms: Public domain | W3C validator |