Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq2 Structured version   Visualization version   GIF version

Theorem mapdheq2 41196
Description: Lemmma for ~? mapdh . One direction of part (2) in [Baer] p. 45. (Contributed by NM, 4-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0gβ€˜πΆ)
mapdh.i 𝐼 = (π‘₯ ∈ V ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))
mapdh.h 𝐻 = (LHypβ€˜πΎ)
mapdh.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
mapdh.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
mapdh.v 𝑉 = (Baseβ€˜π‘ˆ)
mapdh.s βˆ’ = (-gβ€˜π‘ˆ)
mapdhc.o 0 = (0gβ€˜π‘ˆ)
mapdh.n 𝑁 = (LSpanβ€˜π‘ˆ)
mapdh.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
mapdh.d 𝐷 = (Baseβ€˜πΆ)
mapdh.r 𝑅 = (-gβ€˜πΆ)
mapdh.j 𝐽 = (LSpanβ€˜πΆ)
mapdh.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
mapdhc.f (πœ‘ β†’ 𝐹 ∈ 𝐷)
mapdh.mn (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐹}))
mapdhcl.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
mapdhe.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
mapdhe.g (πœ‘ β†’ 𝐺 ∈ 𝐷)
mapdh.ne2 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
Assertion
Ref Expression
mapdheq2 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺 β†’ (πΌβ€˜βŸ¨π‘Œ, 𝐺, π‘‹βŸ©) = 𝐹))
Distinct variable groups:   π‘₯,𝐷,β„Ž   β„Ž,𝐹,π‘₯   π‘₯,𝐽   π‘₯,𝑀   π‘₯,𝑁   π‘₯, 0   π‘₯,𝑄   π‘₯,𝑅   π‘₯, βˆ’   β„Ž,𝑋,π‘₯   β„Ž,π‘Œ,π‘₯   πœ‘,β„Ž   0 ,β„Ž   𝐢,β„Ž   𝐷,β„Ž   β„Ž,𝐽   β„Ž,𝑀   β„Ž,𝑁   𝑅,β„Ž   π‘ˆ,β„Ž   βˆ’ ,β„Ž   β„Ž,𝐺,π‘₯
Allowed substitution hints:   πœ‘(π‘₯)   𝐢(π‘₯)   𝑄(β„Ž)   π‘ˆ(π‘₯)   𝐻(π‘₯,β„Ž)   𝐼(π‘₯,β„Ž)   𝐾(π‘₯,β„Ž)   𝑉(π‘₯,β„Ž)   π‘Š(π‘₯,β„Ž)

Proof of Theorem mapdheq2
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0gβ€˜πΆ)
2 mapdh.i . . 3 𝐼 = (π‘₯ ∈ V ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))
3 mapdh.h . . 3 𝐻 = (LHypβ€˜πΎ)
4 mapdh.m . . 3 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
5 mapdh.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
6 mapdh.v . . 3 𝑉 = (Baseβ€˜π‘ˆ)
7 mapdh.s . . 3 βˆ’ = (-gβ€˜π‘ˆ)
8 mapdhc.o . . 3 0 = (0gβ€˜π‘ˆ)
9 mapdh.n . . 3 𝑁 = (LSpanβ€˜π‘ˆ)
10 mapdh.c . . 3 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
11 mapdh.d . . 3 𝐷 = (Baseβ€˜πΆ)
12 mapdh.r . . 3 𝑅 = (-gβ€˜πΆ)
13 mapdh.j . . 3 𝐽 = (LSpanβ€˜πΆ)
14 mapdh.k . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
15 mapdhc.f . . 3 (πœ‘ β†’ 𝐹 ∈ 𝐷)
16 mapdh.mn . . 3 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐹}))
17 mapdhcl.x . . 3 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
18 mapdhe.y . . 3 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
19 mapdhe.g . . 3 (πœ‘ β†’ 𝐺 ∈ 𝐷)
20 mapdh.ne2 . . 3 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20mapdheq 41195 . 2 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺 ↔ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))))
2216adantr 480 . . . 4 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐹}))
233, 5, 14dvhlmod 40577 . . . . . . . . 9 (πœ‘ β†’ π‘ˆ ∈ LMod)
2417eldifad 3957 . . . . . . . . 9 (πœ‘ β†’ 𝑋 ∈ 𝑉)
2518eldifad 3957 . . . . . . . . 9 (πœ‘ β†’ π‘Œ ∈ 𝑉)
266, 7, 9, 23, 24, 25lspsnsub 20884 . . . . . . . 8 (πœ‘ β†’ (π‘β€˜{(𝑋 βˆ’ π‘Œ)}) = (π‘β€˜{(π‘Œ βˆ’ 𝑋)}))
2726fveq2d 6895 . . . . . . 7 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑋)})))
283, 10, 14lcdlmod 41059 . . . . . . . 8 (πœ‘ β†’ 𝐢 ∈ LMod)
2911, 12, 13, 28, 15, 19lspsnsub 20884 . . . . . . 7 (πœ‘ β†’ (π½β€˜{(𝐹𝑅𝐺)}) = (π½β€˜{(𝐺𝑅𝐹)}))
3027, 29eqeq12d 2744 . . . . . 6 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}) ↔ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑋)})) = (π½β€˜{(𝐺𝑅𝐹)})))
3130biimpa 476 . . . . 5 ((πœ‘ ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)})) β†’ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑋)})) = (π½β€˜{(𝐺𝑅𝐹)}))
3231adantrl 715 . . . 4 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑋)})) = (π½β€˜{(𝐺𝑅𝐹)}))
3314adantr 480 . . . . 5 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
3419adantr 480 . . . . 5 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ 𝐺 ∈ 𝐷)
35 simprl 770 . . . . 5 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ (π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}))
3618adantr 480 . . . . 5 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
3717adantr 480 . . . . 5 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
3815adantr 480 . . . . 5 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ 𝐹 ∈ 𝐷)
3920necomd 2992 . . . . . 6 (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑋}))
4039adantr 480 . . . . 5 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑋}))
411, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 33, 34, 35, 36, 37, 38, 40mapdheq 41195 . . . 4 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ ((πΌβ€˜βŸ¨π‘Œ, 𝐺, π‘‹βŸ©) = 𝐹 ↔ ((π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐹}) ∧ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑋)})) = (π½β€˜{(𝐺𝑅𝐹)}))))
4222, 32, 41mpbir2and 712 . . 3 ((πœ‘ ∧ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))) β†’ (πΌβ€˜βŸ¨π‘Œ, 𝐺, π‘‹βŸ©) = 𝐹)
4342ex 412 . 2 (πœ‘ β†’ (((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)})) β†’ (πΌβ€˜βŸ¨π‘Œ, 𝐺, π‘‹βŸ©) = 𝐹))
4421, 43sylbid 239 1 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺 β†’ (πΌβ€˜βŸ¨π‘Œ, 𝐺, π‘‹βŸ©) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   β‰  wne 2936  Vcvv 3470   βˆ– cdif 3942  ifcif 4524  {csn 4624  βŸ¨cotp 4632   ↦ cmpt 5225  β€˜cfv 6542  β„©crio 7369  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986  Basecbs 17173  0gc0g 17414  -gcsg 18885  LSpanclspn 20848  HLchlt 38816  LHypclh 39451  DVecHcdvh 40545  LCDualclcd 41053  mapdcmpd 41091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-riotaBAD 38419
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17416  df-mre 17559  df-mrc 17560  df-acs 17562  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-p1 18411  df-lat 18417  df-clat 18484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cntz 19261  df-oppg 19290  df-lsm 19584  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-lmod 20738  df-lss 20809  df-lsp 20849  df-lvec 20981  df-lsatoms 38442  df-lshyp 38443  df-lcv 38485  df-lfl 38524  df-lkr 38552  df-ldual 38590  df-oposet 38642  df-ol 38644  df-oml 38645  df-covers 38732  df-ats 38733  df-atl 38764  df-cvlat 38788  df-hlat 38817  df-llines 38965  df-lplanes 38966  df-lvols 38967  df-lines 38968  df-psubsp 38970  df-pmap 38971  df-padd 39263  df-lhyp 39455  df-laut 39456  df-ldil 39571  df-ltrn 39572  df-trl 39626  df-tgrp 40210  df-tendo 40222  df-edring 40224  df-dveca 40470  df-disoa 40496  df-dvech 40546  df-dib 40606  df-dic 40640  df-dih 40696  df-doch 40815  df-djh 40862  df-lcdual 41054  df-mapd 41092
This theorem is referenced by:  mapdheq2biN  41197  mapdh7eN  41215  mapdh7cN  41216  mapdh7fN  41218  mapdh75e  41219
  Copyright terms: Public domain W3C validator