![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdheq2 | Structured version Visualization version GIF version |
Description: Lemmma for ~? mapdh . One direction of part (2) in [Baer] p. 45. (Contributed by NM, 4-Apr-2015.) |
Ref | Expression |
---|---|
mapdh.q | β’ π = (0gβπΆ) |
mapdh.i | β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) |
mapdh.h | β’ π» = (LHypβπΎ) |
mapdh.m | β’ π = ((mapdβπΎ)βπ) |
mapdh.u | β’ π = ((DVecHβπΎ)βπ) |
mapdh.v | β’ π = (Baseβπ) |
mapdh.s | β’ β = (-gβπ) |
mapdhc.o | β’ 0 = (0gβπ) |
mapdh.n | β’ π = (LSpanβπ) |
mapdh.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdh.d | β’ π· = (BaseβπΆ) |
mapdh.r | β’ π = (-gβπΆ) |
mapdh.j | β’ π½ = (LSpanβπΆ) |
mapdh.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdhc.f | β’ (π β πΉ β π·) |
mapdh.mn | β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) |
mapdhcl.x | β’ (π β π β (π β { 0 })) |
mapdhe.y | β’ (π β π β (π β { 0 })) |
mapdhe.g | β’ (π β πΊ β π·) |
mapdh.ne2 | β’ (π β (πβ{π}) β (πβ{π})) |
Ref | Expression |
---|---|
mapdheq2 | β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β (πΌββ¨π, πΊ, πβ©) = πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . 3 β’ π = (0gβπΆ) | |
2 | mapdh.i | . . 3 β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) | |
3 | mapdh.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | mapdh.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
5 | mapdh.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
6 | mapdh.v | . . 3 β’ π = (Baseβπ) | |
7 | mapdh.s | . . 3 β’ β = (-gβπ) | |
8 | mapdhc.o | . . 3 β’ 0 = (0gβπ) | |
9 | mapdh.n | . . 3 β’ π = (LSpanβπ) | |
10 | mapdh.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
11 | mapdh.d | . . 3 β’ π· = (BaseβπΆ) | |
12 | mapdh.r | . . 3 β’ π = (-gβπΆ) | |
13 | mapdh.j | . . 3 β’ π½ = (LSpanβπΆ) | |
14 | mapdh.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
15 | mapdhc.f | . . 3 β’ (π β πΉ β π·) | |
16 | mapdh.mn | . . 3 β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) | |
17 | mapdhcl.x | . . 3 β’ (π β π β (π β { 0 })) | |
18 | mapdhe.y | . . 3 β’ (π β π β (π β { 0 })) | |
19 | mapdhe.g | . . 3 β’ (π β πΊ β π·) | |
20 | mapdh.ne2 | . . 3 β’ (π β (πβ{π}) β (πβ{π})) | |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | mapdheq 41093 | . 2 β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)})))) |
22 | 16 | adantr 480 | . . . 4 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πβ(πβ{π})) = (π½β{πΉ})) |
23 | 3, 5, 14 | dvhlmod 40475 | . . . . . . . . 9 β’ (π β π β LMod) |
24 | 17 | eldifad 3953 | . . . . . . . . 9 β’ (π β π β π) |
25 | 18 | eldifad 3953 | . . . . . . . . 9 β’ (π β π β π) |
26 | 6, 7, 9, 23, 24, 25 | lspsnsub 20846 | . . . . . . . 8 β’ (π β (πβ{(π β π)}) = (πβ{(π β π)})) |
27 | 26 | fveq2d 6886 | . . . . . . 7 β’ (π β (πβ(πβ{(π β π)})) = (πβ(πβ{(π β π)}))) |
28 | 3, 10, 14 | lcdlmod 40957 | . . . . . . . 8 β’ (π β πΆ β LMod) |
29 | 11, 12, 13, 28, 15, 19 | lspsnsub 20846 | . . . . . . 7 β’ (π β (π½β{(πΉπ πΊ)}) = (π½β{(πΊπ πΉ)})) |
30 | 27, 29 | eqeq12d 2740 | . . . . . 6 β’ (π β ((πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}) β (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΉ)}))) |
31 | 30 | biimpa 476 | . . . . 5 β’ ((π β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)})) β (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΉ)})) |
32 | 31 | adantrl 713 | . . . 4 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΉ)})) |
33 | 14 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πΎ β HL β§ π β π»)) |
34 | 19 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β πΊ β π·) |
35 | simprl 768 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πβ(πβ{π})) = (π½β{πΊ})) | |
36 | 18 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β π β (π β { 0 })) |
37 | 17 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β π β (π β { 0 })) |
38 | 15 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β πΉ β π·) |
39 | 20 | necomd 2988 | . . . . . 6 β’ (π β (πβ{π}) β (πβ{π})) |
40 | 39 | adantr 480 | . . . . 5 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πβ{π}) β (πβ{π})) |
41 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 33, 34, 35, 36, 37, 38, 40 | mapdheq 41093 | . . . 4 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β ((πΌββ¨π, πΊ, πβ©) = πΉ β ((πβ(πβ{π})) = (π½β{πΉ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΉ)})))) |
42 | 22, 32, 41 | mpbir2and 710 | . . 3 β’ ((π β§ ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)}))) β (πΌββ¨π, πΊ, πβ©) = πΉ) |
43 | 42 | ex 412 | . 2 β’ (π β (((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)})) β (πΌββ¨π, πΊ, πβ©) = πΉ)) |
44 | 21, 43 | sylbid 239 | 1 β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β (πΌββ¨π, πΊ, πβ©) = πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 Vcvv 3466 β cdif 3938 ifcif 4521 {csn 4621 β¨cotp 4629 β¦ cmpt 5222 βcfv 6534 β©crio 7357 (class class class)co 7402 1st c1st 7967 2nd c2nd 7968 Basecbs 17145 0gc0g 17386 -gcsg 18857 LSpanclspn 20810 HLchlt 38714 LHypclh 39349 DVecHcdvh 40443 LCDualclcd 40951 mapdcmpd 40989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-riotaBAD 38317 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-ot 4630 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-n0 12471 df-z 12557 df-uz 12821 df-fz 13483 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-0g 17388 df-mre 17531 df-mrc 17532 df-acs 17534 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19042 df-cntz 19225 df-oppg 19254 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20032 df-rng 20050 df-ur 20079 df-ring 20132 df-oppr 20228 df-dvdsr 20251 df-unit 20252 df-invr 20282 df-dvr 20295 df-drng 20581 df-lmod 20700 df-lss 20771 df-lsp 20811 df-lvec 20943 df-lsatoms 38340 df-lshyp 38341 df-lcv 38383 df-lfl 38422 df-lkr 38450 df-ldual 38488 df-oposet 38540 df-ol 38542 df-oml 38543 df-covers 38630 df-ats 38631 df-atl 38662 df-cvlat 38686 df-hlat 38715 df-llines 38863 df-lplanes 38864 df-lvols 38865 df-lines 38866 df-psubsp 38868 df-pmap 38869 df-padd 39161 df-lhyp 39353 df-laut 39354 df-ldil 39469 df-ltrn 39470 df-trl 39524 df-tgrp 40108 df-tendo 40120 df-edring 40122 df-dveca 40368 df-disoa 40394 df-dvech 40444 df-dib 40504 df-dic 40538 df-dih 40594 df-doch 40713 df-djh 40760 df-lcdual 40952 df-mapd 40990 |
This theorem is referenced by: mapdheq2biN 41095 mapdh7eN 41113 mapdh7cN 41114 mapdh7fN 41116 mapdh75e 41117 |
Copyright terms: Public domain | W3C validator |