![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqnprm | Structured version Visualization version GIF version |
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
sqnprm | ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11732 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 474 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℝ) |
3 | absresq 14449 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = (𝐴↑2)) |
5 | 2 | recnd 10405 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℂ) |
6 | 5 | abscld 14583 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℝ) |
7 | 6 | recnd 10405 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℂ) |
8 | 7 | sqvald 13324 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
9 | 4, 8 | eqtr3d 2816 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
10 | simpr 479 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ ℙ) | |
11 | 9, 10 | eqeltrrd 2860 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) |
12 | nn0abscl 14459 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | |
13 | 12 | adantr 474 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℕ0) |
14 | 13 | nn0zd 11832 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℤ) |
15 | sq1 13277 | . . . . . 6 ⊢ (1↑2) = 1 | |
16 | prmuz2 15813 | . . . . . . . . 9 ⊢ ((𝐴↑2) ∈ ℙ → (𝐴↑2) ∈ (ℤ≥‘2)) | |
17 | 16 | adantl 475 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ (ℤ≥‘2)) |
18 | eluz2gt1 12067 | . . . . . . . 8 ⊢ ((𝐴↑2) ∈ (ℤ≥‘2) → 1 < (𝐴↑2)) | |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (𝐴↑2)) |
20 | 19, 4 | breqtrrd 4914 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < ((abs‘𝐴)↑2)) |
21 | 15, 20 | syl5eqbr 4921 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1↑2) < ((abs‘𝐴)↑2)) |
22 | 5 | absge0d 14591 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 0 ≤ (abs‘𝐴)) |
23 | 1re 10376 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
24 | 0le1 10898 | . . . . . . 7 ⊢ 0 ≤ 1 | |
25 | lt2sq 13256 | . . . . . . 7 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) | |
26 | 23, 24, 25 | mpanl12 692 | . . . . . 6 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) |
27 | 6, 22, 26 | syl2anc 579 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) |
28 | 21, 27 | mpbird 249 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (abs‘𝐴)) |
29 | eluz2b1 12066 | . . . 4 ⊢ ((abs‘𝐴) ∈ (ℤ≥‘2) ↔ ((abs‘𝐴) ∈ ℤ ∧ 1 < (abs‘𝐴))) | |
30 | 14, 28, 29 | sylanbrc 578 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ (ℤ≥‘2)) |
31 | nprm 15806 | . . 3 ⊢ (((abs‘𝐴) ∈ (ℤ≥‘2) ∧ (abs‘𝐴) ∈ (ℤ≥‘2)) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) | |
32 | 30, 30, 31 | syl2anc 579 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) |
33 | 11, 32 | pm2.65da 807 | 1 ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 0cc0 10272 1c1 10273 · cmul 10277 < clt 10411 ≤ cle 10412 2c2 11430 ℕ0cn0 11642 ℤcz 11728 ℤ≥cuz 11992 ↑cexp 13178 abscabs 14381 ℙcprime 15790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-dvds 15388 df-prm 15791 |
This theorem is referenced by: 2sqblem 25608 2sqn0 30208 2sqcoprm 30209 |
Copyright terms: Public domain | W3C validator |