MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqnprm Structured version   Visualization version   GIF version

Theorem sqnprm 16608
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
sqnprm (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ)

Proof of Theorem sqnprm
StepHypRef Expression
1 zre 12467 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℝ)
3 absresq 15204 . . . . 5 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
42, 3syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = (𝐴↑2))
52recnd 11135 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℂ)
65abscld 15341 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℝ)
76recnd 11135 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℂ)
87sqvald 14045 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
94, 8eqtr3d 2768 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) = ((abs‘𝐴) · (abs‘𝐴)))
10 simpr 484 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ ℙ)
119, 10eqeltrrd 2832 . 2 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ)
12 nn0abscl 15214 . . . . . 6 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
1312adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℕ0)
1413nn0zd 12489 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℤ)
15 sq1 14097 . . . . . 6 (1↑2) = 1
16 prmuz2 16602 . . . . . . . . 9 ((𝐴↑2) ∈ ℙ → (𝐴↑2) ∈ (ℤ‘2))
1716adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ (ℤ‘2))
18 eluz2gt1 12813 . . . . . . . 8 ((𝐴↑2) ∈ (ℤ‘2) → 1 < (𝐴↑2))
1917, 18syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (𝐴↑2))
2019, 4breqtrrd 5114 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < ((abs‘𝐴)↑2))
2115, 20eqbrtrid 5121 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1↑2) < ((abs‘𝐴)↑2))
225absge0d 15349 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 0 ≤ (abs‘𝐴))
23 1re 11107 . . . . . . 7 1 ∈ ℝ
24 0le1 11635 . . . . . . 7 0 ≤ 1
25 lt2sq 14035 . . . . . . 7 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2)))
2623, 24, 25mpanl12 702 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2)))
276, 22, 26syl2anc 584 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2)))
2821, 27mpbird 257 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (abs‘𝐴))
29 eluz2b1 12812 . . . 4 ((abs‘𝐴) ∈ (ℤ‘2) ↔ ((abs‘𝐴) ∈ ℤ ∧ 1 < (abs‘𝐴)))
3014, 28, 29sylanbrc 583 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ (ℤ‘2))
31 nprm 16594 . . 3 (((abs‘𝐴) ∈ (ℤ‘2) ∧ (abs‘𝐴) ∈ (ℤ‘2)) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ)
3230, 30, 31syl2anc 584 . 2 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ)
3311, 32pm2.65da 816 1 (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   · cmul 11006   < clt 11141  cle 11142  2c2 12175  0cn0 12376  cz 12463  cuz 12727  cexp 13963  abscabs 15136  cprime 16577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-prm 16578
This theorem is referenced by:  2sqblem  27364  2sqn0  27367  2sqcoprm  27368  2sqnn  27372
  Copyright terms: Public domain W3C validator