HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm1 Structured version   Visualization version   GIF version

Theorem norm1 29010
Description: From any nonzero Hilbert space vector, construct a vector whose norm is 1. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
norm1 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)

Proof of Theorem norm1
StepHypRef Expression
1 normcl 28886 . . . . . 6 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
21adantr 484 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
3 normne0 28891 . . . . . 6 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
43biimpar 481 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
52, 4rereccld 11444 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
65recnd 10646 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
7 simpl 486 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
8 norm-iii 28901 . . 3 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (norm‘((1 / (norm𝐴)) · 𝐴)) = ((abs‘(1 / (norm𝐴))) · (norm𝐴)))
96, 7, 8syl2anc 587 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = ((abs‘(1 / (norm𝐴))) · (norm𝐴)))
10 normgt0 28888 . . . . . 6 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
1110biimpa 480 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
12 1re 10618 . . . . . 6 1 ∈ ℝ
13 0le1 11140 . . . . . 6 0 ≤ 1
14 divge0 11486 . . . . . 6 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → 0 ≤ (1 / (norm𝐴)))
1512, 13, 14mpanl12 701 . . . . 5 (((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴)) → 0 ≤ (1 / (norm𝐴)))
162, 11, 15syl2anc 587 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
175, 16absidd 14761 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
1817oveq1d 7145 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (norm𝐴)) = ((1 / (norm𝐴)) · (norm𝐴)))
191recnd 10646 . . . 4 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℂ)
2019adantr 484 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
2120, 4recid2d 11389 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm𝐴)) = 1)
229, 18, 213eqtrd 2860 1 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3007   class class class wbr 5039  cfv 6328  (class class class)co 7130  cc 10512  cr 10513  0cc0 10514  1c1 10515   · cmul 10519   < clt 10652  cle 10653   / cdiv 11274  abscabs 14572  chba 28680   · csm 28682  normcno 28684  0c0v 28685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-hv0cl 28764  ax-hfvmul 28766  ax-hvmul0 28771  ax-hfi 28840  ax-his1 28843  ax-his3 28845  ax-his4 28846
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-hnorm 28729
This theorem is referenced by:  norm1exi  29011  nmlnop0iALT  29756  nmbdoplbi  29785  nmcoplbi  29789  nmbdfnlbi  29810  nmcfnlbi  29813  branmfn  29866
  Copyright terms: Public domain W3C validator