![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm1 | Structured version Visualization version GIF version |
Description: From any nonzero Hilbert space vector, construct a vector whose norm is 1. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm1 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝐴)) ·ℎ 𝐴)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normcl 28507 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) | |
2 | 1 | adantr 473 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (normℎ‘𝐴) ∈ ℝ) |
3 | normne0 28512 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0ℎ)) | |
4 | 3 | biimpar 470 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (normℎ‘𝐴) ≠ 0) |
5 | 2, 4 | rereccld 11144 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (1 / (normℎ‘𝐴)) ∈ ℝ) |
6 | 5 | recnd 10357 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (1 / (normℎ‘𝐴)) ∈ ℂ) |
7 | simpl 475 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 𝐴 ∈ ℋ) | |
8 | norm-iii 28522 | . . 3 ⊢ (((1 / (normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (normℎ‘((1 / (normℎ‘𝐴)) ·ℎ 𝐴)) = ((abs‘(1 / (normℎ‘𝐴))) · (normℎ‘𝐴))) | |
9 | 6, 7, 8 | syl2anc 580 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝐴)) ·ℎ 𝐴)) = ((abs‘(1 / (normℎ‘𝐴))) · (normℎ‘𝐴))) |
10 | normgt0 28509 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) | |
11 | 10 | biimpa 469 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (normℎ‘𝐴)) |
12 | 1re 10328 | . . . . . 6 ⊢ 1 ∈ ℝ | |
13 | 0le1 10843 | . . . . . 6 ⊢ 0 ≤ 1 | |
14 | divge0 11184 | . . . . . 6 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((normℎ‘𝐴) ∈ ℝ ∧ 0 < (normℎ‘𝐴))) → 0 ≤ (1 / (normℎ‘𝐴))) | |
15 | 12, 13, 14 | mpanl12 694 | . . . . 5 ⊢ (((normℎ‘𝐴) ∈ ℝ ∧ 0 < (normℎ‘𝐴)) → 0 ≤ (1 / (normℎ‘𝐴))) |
16 | 2, 11, 15 | syl2anc 580 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 ≤ (1 / (normℎ‘𝐴))) |
17 | 5, 16 | absidd 14502 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (abs‘(1 / (normℎ‘𝐴))) = (1 / (normℎ‘𝐴))) |
18 | 17 | oveq1d 6893 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → ((abs‘(1 / (normℎ‘𝐴))) · (normℎ‘𝐴)) = ((1 / (normℎ‘𝐴)) · (normℎ‘𝐴))) |
19 | 1 | recnd 10357 | . . . 4 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℂ) |
20 | 19 | adantr 473 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (normℎ‘𝐴) ∈ ℂ) |
21 | 20, 4 | recid2d 11089 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → ((1 / (normℎ‘𝐴)) · (normℎ‘𝐴)) = 1) |
22 | 9, 18, 21 | 3eqtrd 2837 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝐴)) ·ℎ 𝐴)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 ℂcc 10222 ℝcr 10223 0cc0 10224 1c1 10225 · cmul 10229 < clt 10363 ≤ cle 10364 / cdiv 10976 abscabs 14315 ℋchba 28301 ·ℎ csm 28303 normℎcno 28305 0ℎc0v 28306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-hv0cl 28385 ax-hfvmul 28387 ax-hvmul0 28392 ax-hfi 28461 ax-his1 28464 ax-his3 28466 ax-his4 28467 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-seq 13056 df-exp 13115 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-hnorm 28350 |
This theorem is referenced by: norm1exi 28632 nmlnop0iALT 29379 nmbdoplbi 29408 nmcoplbi 29412 nmbdfnlbi 29433 nmcfnlbi 29436 branmfn 29489 |
Copyright terms: Public domain | W3C validator |