| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbupgrel | Structured version Visualization version GIF version | ||
| Description: A neighbor of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020.) |
| Ref | Expression |
|---|---|
| nbuhgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| nbuhgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| nbupgrel | ⊢ (((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾)) → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbuhgr.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | nbuhgr.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | nbupgr 29320 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ (𝑉 ∖ {𝐾}) ∣ {𝐾, 𝑛} ∈ 𝐸}) |
| 4 | 3 | eleq2d 2817 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝐾}) ∣ {𝐾, 𝑛} ∈ 𝐸})) |
| 5 | preq2 4687 | . . . . . 6 ⊢ (𝑛 = 𝑁 → {𝐾, 𝑛} = {𝐾, 𝑁}) | |
| 6 | 5 | eleq1d 2816 | . . . . 5 ⊢ (𝑛 = 𝑁 → ({𝐾, 𝑛} ∈ 𝐸 ↔ {𝐾, 𝑁} ∈ 𝐸)) |
| 7 | 6 | elrab 3647 | . . . 4 ⊢ (𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝐾}) ∣ {𝐾, 𝑛} ∈ 𝐸} ↔ (𝑁 ∈ (𝑉 ∖ {𝐾}) ∧ {𝐾, 𝑁} ∈ 𝐸)) |
| 8 | 4, 7 | bitrdi 287 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ (𝑁 ∈ (𝑉 ∖ {𝐾}) ∧ {𝐾, 𝑁} ∈ 𝐸))) |
| 9 | 8 | adantr 480 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾)) → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ (𝑁 ∈ (𝑉 ∖ {𝐾}) ∧ {𝐾, 𝑁} ∈ 𝐸))) |
| 10 | eldifsn 4738 | . . . . 5 ⊢ (𝑁 ∈ (𝑉 ∖ {𝐾}) ↔ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾)) | |
| 11 | 10 | biimpri 228 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾) → 𝑁 ∈ (𝑉 ∖ {𝐾})) |
| 12 | 11 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾)) → 𝑁 ∈ (𝑉 ∖ {𝐾})) |
| 13 | 12 | biantrurd 532 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾)) → ({𝐾, 𝑁} ∈ 𝐸 ↔ (𝑁 ∈ (𝑉 ∖ {𝐾}) ∧ {𝐾, 𝑁} ∈ 𝐸))) |
| 14 | prcom 4685 | . . . 4 ⊢ {𝐾, 𝑁} = {𝑁, 𝐾} | |
| 15 | 14 | eleq1i 2822 | . . 3 ⊢ ({𝐾, 𝑁} ∈ 𝐸 ↔ {𝑁, 𝐾} ∈ 𝐸) |
| 16 | 15 | a1i 11 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾)) → ({𝐾, 𝑁} ∈ 𝐸 ↔ {𝑁, 𝐾} ∈ 𝐸)) |
| 17 | 9, 13, 16 | 3bitr2d 307 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾)) → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ∖ cdif 3899 {csn 4576 {cpr 4578 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28972 Edgcedg 29023 UPGraphcupgr 29056 NeighbVtx cnbgr 29308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-fz 13405 df-hash 14235 df-edg 29024 df-upgr 29058 df-nbgr 29309 |
| This theorem is referenced by: nbupgrres 29340 cplgr3v 29411 |
| Copyright terms: Public domain | W3C validator |