MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negmod0 Structured version   Visualization version   GIF version

Theorem negmod0 13250
Description: 𝐴 is divisible by 𝐵 iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.)
Assertion
Ref Expression
negmod0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0))

Proof of Theorem negmod0
StepHypRef Expression
1 rerpdivcl 12416 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
2 recn 10625 . . . 4 ((𝐴 / 𝐵) ∈ ℝ → (𝐴 / 𝐵) ∈ ℂ)
3 znegclb 12016 . . . 4 ((𝐴 / 𝐵) ∈ ℂ → ((𝐴 / 𝐵) ∈ ℤ ↔ -(𝐴 / 𝐵) ∈ ℤ))
41, 2, 33syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ∈ ℤ ↔ -(𝐴 / 𝐵) ∈ ℤ))
5 recn 10625 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
65adantr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
7 rpcn 12396 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
87adantl 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
9 rpne0 12402 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ≠ 0)
109adantl 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
116, 8, 10divnegd 11427 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
1211eleq1d 2900 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-(𝐴 / 𝐵) ∈ ℤ ↔ (-𝐴 / 𝐵) ∈ ℤ))
134, 12bitrd 282 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ∈ ℤ ↔ (-𝐴 / 𝐵) ∈ ℤ))
14 mod0 13248 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ))
15 renegcl 10947 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
16 mod0 13248 . . 3 ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((-𝐴 mod 𝐵) = 0 ↔ (-𝐴 / 𝐵) ∈ ℤ))
1715, 16sylan 583 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((-𝐴 mod 𝐵) = 0 ↔ (-𝐴 / 𝐵) ∈ ℤ))
1813, 14, 173bitr4d 314 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  (class class class)co 7149  cc 10533  cr 10534  0cc0 10535  -cneg 10869   / cdiv 11295  cz 11978  +crp 12386   mod cmo 13241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fl 13166  df-mod 13242
This theorem is referenced by:  absmod0  14663  gausslemma2dlem0i  25954
  Copyright terms: Public domain W3C validator