MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodconglem Structured version   Visualization version   GIF version

Theorem mndodconglem 19245
Description: Lemma for mndodcong 19246. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
mndodconglem.1 (𝜑𝐺 ∈ Mnd)
mndodconglem.2 (𝜑𝐴𝑋)
mndodconglem.3 (𝜑 → (𝑂𝐴) ∈ ℕ)
mndodconglem.4 (𝜑𝑀 ∈ ℕ0)
mndodconglem.5 (𝜑𝑁 ∈ ℕ0)
mndodconglem.6 (𝜑𝑀 < (𝑂𝐴))
mndodconglem.7 (𝜑𝑁 < (𝑂𝐴))
mndodconglem.8 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
Assertion
Ref Expression
mndodconglem ((𝜑𝑀𝑁) → 𝑀 = 𝑁)

Proof of Theorem mndodconglem
StepHypRef Expression
1 mndodconglem.2 . . . . . . 7 (𝜑𝐴𝑋)
2 mndodconglem.3 . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) ∈ ℕ)
32nnred 12089 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ∈ ℝ)
43recnd 11104 . . . . . . . . 9 (𝜑 → (𝑂𝐴) ∈ ℂ)
5 mndodconglem.4 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
65nn0red 12395 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
76recnd 11104 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
8 mndodconglem.5 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
98nn0red 12395 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
109recnd 11104 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
114, 7, 10addsubassd 11453 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) = ((𝑂𝐴) + (𝑀𝑁)))
122nnzd 12526 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐴) ∈ ℤ)
135nn0zd 12525 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1412, 13zaddcld 12531 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℤ)
1514zred 12527 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℝ)
16 mndodconglem.7 . . . . . . . . . 10 (𝜑𝑁 < (𝑂𝐴))
17 nn0addge1 12380 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
183, 5, 17syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
199, 3, 15, 16, 18ltletrd 11236 . . . . . . . . 9 (𝜑𝑁 < ((𝑂𝐴) + 𝑀))
208nn0zd 12525 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
21 znnsub 12467 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑂𝐴) + 𝑀) ∈ ℤ) → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2220, 14, 21syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2319, 22mpbid 231 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ)
2411, 23eqeltrrd 2838 . . . . . . 7 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ)
254, 7, 10addsub12d 11456 . . . . . . . . 9 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) = (𝑀 + ((𝑂𝐴) − 𝑁)))
2625oveq1d 7352 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴))
27 mndodconglem.8 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2827oveq1d 7352 . . . . . . . . . 10 (𝜑 → ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
29 mndodconglem.1 . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
30 znnsub 12467 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3120, 12, 30syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3216, 31mpbid 231 . . . . . . . . . . . 12 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ)
3332nnnn0d 12394 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ0)
34 odcl.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
35 odid.3 . . . . . . . . . . . 12 · = (.g𝐺)
36 eqid 2736 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
3734, 35, 36mulgnn0dir 18829 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3829, 5, 33, 1, 37syl13anc 1371 . . . . . . . . . 10 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3934, 35, 36mulgnn0dir 18829 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4029, 8, 33, 1, 39syl13anc 1371 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4128, 38, 403eqtr4d 2786 . . . . . . . . 9 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴))
4210, 4pncan3d 11436 . . . . . . . . . . 11 (𝜑 → (𝑁 + ((𝑂𝐴) − 𝑁)) = (𝑂𝐴))
4342oveq1d 7352 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑂𝐴) · 𝐴))
44 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
45 odid.4 . . . . . . . . . . . 12 0 = (0g𝐺)
4634, 44, 35, 45odid 19242 . . . . . . . . . . 11 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
471, 46syl 17 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) · 𝐴) = 0 )
4843, 47eqtrd 2776 . . . . . . . . 9 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
4941, 48eqtrd 2776 . . . . . . . 8 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
5026, 49eqtrd 2776 . . . . . . 7 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 )
5134, 44, 35, 45odlem2 19243 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ ∧ (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
521, 24, 50, 51syl3anc 1370 . . . . . 6 (𝜑 → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
53 elfzle2 13361 . . . . . 6 ((𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))) → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5452, 53syl 17 . . . . 5 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5513, 20zsubcld 12532 . . . . . . 7 (𝜑 → (𝑀𝑁) ∈ ℤ)
5655zred 12527 . . . . . 6 (𝜑 → (𝑀𝑁) ∈ ℝ)
573, 56addge01d 11664 . . . . 5 (𝜑 → (0 ≤ (𝑀𝑁) ↔ (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁))))
5854, 57mpbird 256 . . . 4 (𝜑 → 0 ≤ (𝑀𝑁))
596, 9subge0d 11666 . . . 4 (𝜑 → (0 ≤ (𝑀𝑁) ↔ 𝑁𝑀))
6058, 59mpbid 231 . . 3 (𝜑𝑁𝑀)
616, 9letri3d 11218 . . . 4 (𝜑 → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6261biimprd 247 . . 3 (𝜑 → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6360, 62mpan2d 691 . 2 (𝜑 → (𝑀𝑁𝑀 = 𝑁))
6463imp 407 1 ((𝜑𝑀𝑁) → 𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105   class class class wbr 5092  cfv 6479  (class class class)co 7337  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   < clt 11110  cle 11111  cmin 11306  cn 12074  0cn0 12334  cz 12420  ...cfz 13340  Basecbs 17009  +gcplusg 17059  0gc0g 17247  Mndcmnd 18482  .gcmg 18796  odcod 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-inf 9300  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-seq 13823  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mulg 18797  df-od 19232
This theorem is referenced by:  mndodcong  19246
  Copyright terms: Public domain W3C validator