MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodconglem Structured version   Visualization version   GIF version

Theorem mndodconglem 19559
Description: Lemma for mndodcong 19560. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
mndodconglem.1 (𝜑𝐺 ∈ Mnd)
mndodconglem.2 (𝜑𝐴𝑋)
mndodconglem.3 (𝜑 → (𝑂𝐴) ∈ ℕ)
mndodconglem.4 (𝜑𝑀 ∈ ℕ0)
mndodconglem.5 (𝜑𝑁 ∈ ℕ0)
mndodconglem.6 (𝜑𝑀 < (𝑂𝐴))
mndodconglem.7 (𝜑𝑁 < (𝑂𝐴))
mndodconglem.8 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
Assertion
Ref Expression
mndodconglem ((𝜑𝑀𝑁) → 𝑀 = 𝑁)

Proof of Theorem mndodconglem
StepHypRef Expression
1 mndodconglem.2 . . . . . . 7 (𝜑𝐴𝑋)
2 mndodconglem.3 . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) ∈ ℕ)
32nnred 12281 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ∈ ℝ)
43recnd 11289 . . . . . . . . 9 (𝜑 → (𝑂𝐴) ∈ ℂ)
5 mndodconglem.4 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
65nn0red 12588 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
76recnd 11289 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
8 mndodconglem.5 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
98nn0red 12588 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
109recnd 11289 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
114, 7, 10addsubassd 11640 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) = ((𝑂𝐴) + (𝑀𝑁)))
122nnzd 12640 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐴) ∈ ℤ)
135nn0zd 12639 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1412, 13zaddcld 12726 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℤ)
1514zred 12722 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℝ)
16 mndodconglem.7 . . . . . . . . . 10 (𝜑𝑁 < (𝑂𝐴))
17 nn0addge1 12572 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
183, 5, 17syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
199, 3, 15, 16, 18ltletrd 11421 . . . . . . . . 9 (𝜑𝑁 < ((𝑂𝐴) + 𝑀))
208nn0zd 12639 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
21 znnsub 12663 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑂𝐴) + 𝑀) ∈ ℤ) → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2220, 14, 21syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2319, 22mpbid 232 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ)
2411, 23eqeltrrd 2842 . . . . . . 7 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ)
254, 7, 10addsub12d 11643 . . . . . . . . 9 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) = (𝑀 + ((𝑂𝐴) − 𝑁)))
2625oveq1d 7446 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴))
27 mndodconglem.8 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2827oveq1d 7446 . . . . . . . . . 10 (𝜑 → ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
29 mndodconglem.1 . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
30 znnsub 12663 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3120, 12, 30syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3216, 31mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ)
3332nnnn0d 12587 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ0)
34 odcl.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
35 odid.3 . . . . . . . . . . . 12 · = (.g𝐺)
36 eqid 2737 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
3734, 35, 36mulgnn0dir 19122 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3829, 5, 33, 1, 37syl13anc 1374 . . . . . . . . . 10 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3934, 35, 36mulgnn0dir 19122 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4029, 8, 33, 1, 39syl13anc 1374 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4128, 38, 403eqtr4d 2787 . . . . . . . . 9 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴))
4210, 4pncan3d 11623 . . . . . . . . . . 11 (𝜑 → (𝑁 + ((𝑂𝐴) − 𝑁)) = (𝑂𝐴))
4342oveq1d 7446 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑂𝐴) · 𝐴))
44 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
45 odid.4 . . . . . . . . . . . 12 0 = (0g𝐺)
4634, 44, 35, 45odid 19556 . . . . . . . . . . 11 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
471, 46syl 17 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) · 𝐴) = 0 )
4843, 47eqtrd 2777 . . . . . . . . 9 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
4941, 48eqtrd 2777 . . . . . . . 8 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
5026, 49eqtrd 2777 . . . . . . 7 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 )
5134, 44, 35, 45odlem2 19557 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ ∧ (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
521, 24, 50, 51syl3anc 1373 . . . . . 6 (𝜑 → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
53 elfzle2 13568 . . . . . 6 ((𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))) → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5452, 53syl 17 . . . . 5 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5513, 20zsubcld 12727 . . . . . . 7 (𝜑 → (𝑀𝑁) ∈ ℤ)
5655zred 12722 . . . . . 6 (𝜑 → (𝑀𝑁) ∈ ℝ)
573, 56addge01d 11851 . . . . 5 (𝜑 → (0 ≤ (𝑀𝑁) ↔ (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁))))
5854, 57mpbird 257 . . . 4 (𝜑 → 0 ≤ (𝑀𝑁))
596, 9subge0d 11853 . . . 4 (𝜑 → (0 ≤ (𝑀𝑁) ↔ 𝑁𝑀))
6058, 59mpbid 232 . . 3 (𝜑𝑁𝑀)
616, 9letri3d 11403 . . . 4 (𝜑 → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6261biimprd 248 . . 3 (𝜑 → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6360, 62mpan2d 694 . 2 (𝜑 → (𝑀𝑁𝑀 = 𝑁))
6463imp 406 1 ((𝜑𝑀𝑁) → 𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Mndcmnd 18747  .gcmg 19085  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mulg 19086  df-od 19546
This theorem is referenced by:  mndodcong  19560
  Copyright terms: Public domain W3C validator