MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodconglem Structured version   Visualization version   GIF version

Theorem mndodconglem 18664
Description: Lemma for mndodcong 18665. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
mndodconglem.1 (𝜑𝐺 ∈ Mnd)
mndodconglem.2 (𝜑𝐴𝑋)
mndodconglem.3 (𝜑 → (𝑂𝐴) ∈ ℕ)
mndodconglem.4 (𝜑𝑀 ∈ ℕ0)
mndodconglem.5 (𝜑𝑁 ∈ ℕ0)
mndodconglem.6 (𝜑𝑀 < (𝑂𝐴))
mndodconglem.7 (𝜑𝑁 < (𝑂𝐴))
mndodconglem.8 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
Assertion
Ref Expression
mndodconglem ((𝜑𝑀𝑁) → 𝑀 = 𝑁)

Proof of Theorem mndodconglem
StepHypRef Expression
1 mndodconglem.2 . . . . . . 7 (𝜑𝐴𝑋)
2 mndodconglem.3 . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) ∈ ℕ)
32nnred 11644 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ∈ ℝ)
43recnd 10662 . . . . . . . . 9 (𝜑 → (𝑂𝐴) ∈ ℂ)
5 mndodconglem.4 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
65nn0red 11948 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
76recnd 10662 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
8 mndodconglem.5 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
98nn0red 11948 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
109recnd 10662 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
114, 7, 10addsubassd 11010 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) = ((𝑂𝐴) + (𝑀𝑁)))
122nnzd 12078 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐴) ∈ ℤ)
135nn0zd 12077 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1412, 13zaddcld 12083 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℤ)
1514zred 12079 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℝ)
16 mndodconglem.7 . . . . . . . . . 10 (𝜑𝑁 < (𝑂𝐴))
17 nn0addge1 11935 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
183, 5, 17syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
199, 3, 15, 16, 18ltletrd 10793 . . . . . . . . 9 (𝜑𝑁 < ((𝑂𝐴) + 𝑀))
208nn0zd 12077 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
21 znnsub 12020 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑂𝐴) + 𝑀) ∈ ℤ) → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2220, 14, 21syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2319, 22mpbid 235 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ)
2411, 23eqeltrrd 2894 . . . . . . 7 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ)
254, 7, 10addsub12d 11013 . . . . . . . . 9 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) = (𝑀 + ((𝑂𝐴) − 𝑁)))
2625oveq1d 7154 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴))
27 mndodconglem.8 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2827oveq1d 7154 . . . . . . . . . 10 (𝜑 → ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
29 mndodconglem.1 . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
30 znnsub 12020 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3120, 12, 30syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3216, 31mpbid 235 . . . . . . . . . . . 12 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ)
3332nnnn0d 11947 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ0)
34 odcl.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
35 odid.3 . . . . . . . . . . . 12 · = (.g𝐺)
36 eqid 2801 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
3734, 35, 36mulgnn0dir 18252 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3829, 5, 33, 1, 37syl13anc 1369 . . . . . . . . . 10 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3934, 35, 36mulgnn0dir 18252 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4029, 8, 33, 1, 39syl13anc 1369 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4128, 38, 403eqtr4d 2846 . . . . . . . . 9 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴))
4210, 4pncan3d 10993 . . . . . . . . . . 11 (𝜑 → (𝑁 + ((𝑂𝐴) − 𝑁)) = (𝑂𝐴))
4342oveq1d 7154 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑂𝐴) · 𝐴))
44 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
45 odid.4 . . . . . . . . . . . 12 0 = (0g𝐺)
4634, 44, 35, 45odid 18661 . . . . . . . . . . 11 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
471, 46syl 17 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) · 𝐴) = 0 )
4843, 47eqtrd 2836 . . . . . . . . 9 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
4941, 48eqtrd 2836 . . . . . . . 8 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
5026, 49eqtrd 2836 . . . . . . 7 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 )
5134, 44, 35, 45odlem2 18662 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ ∧ (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
521, 24, 50, 51syl3anc 1368 . . . . . 6 (𝜑 → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
53 elfzle2 12910 . . . . . 6 ((𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))) → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5452, 53syl 17 . . . . 5 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5513, 20zsubcld 12084 . . . . . . 7 (𝜑 → (𝑀𝑁) ∈ ℤ)
5655zred 12079 . . . . . 6 (𝜑 → (𝑀𝑁) ∈ ℝ)
573, 56addge01d 11221 . . . . 5 (𝜑 → (0 ≤ (𝑀𝑁) ↔ (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁))))
5854, 57mpbird 260 . . . 4 (𝜑 → 0 ≤ (𝑀𝑁))
596, 9subge0d 11223 . . . 4 (𝜑 → (0 ≤ (𝑀𝑁) ↔ 𝑁𝑀))
6058, 59mpbid 235 . . 3 (𝜑𝑁𝑀)
616, 9letri3d 10775 . . . 4 (𝜑 → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6261biimprd 251 . . 3 (𝜑 → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6360, 62mpan2d 693 . 2 (𝜑 → (𝑀𝑁𝑀 = 𝑁))
6463imp 410 1 ((𝜑𝑀𝑁) → 𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112   class class class wbr 5033  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668  cle 10669  cmin 10863  cn 11629  0cn0 11889  cz 11973  ...cfz 12889  Basecbs 16478  +gcplusg 16560  0gc0g 16708  Mndcmnd 17906  .gcmg 18219  odcod 18647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-seq 13369  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mulg 18220  df-od 18651
This theorem is referenced by:  mndodcong  18665
  Copyright terms: Public domain W3C validator