MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodconglem Structured version   Visualization version   GIF version

Theorem mndodconglem 18405
Description: Lemma for mndodcong 18406. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
mndodconglem.1 (𝜑𝐺 ∈ Mnd)
mndodconglem.2 (𝜑𝐴𝑋)
mndodconglem.3 (𝜑 → (𝑂𝐴) ∈ ℕ)
mndodconglem.4 (𝜑𝑀 ∈ ℕ0)
mndodconglem.5 (𝜑𝑁 ∈ ℕ0)
mndodconglem.6 (𝜑𝑀 < (𝑂𝐴))
mndodconglem.7 (𝜑𝑁 < (𝑂𝐴))
mndodconglem.8 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
Assertion
Ref Expression
mndodconglem ((𝜑𝑀𝑁) → 𝑀 = 𝑁)

Proof of Theorem mndodconglem
StepHypRef Expression
1 mndodconglem.2 . . . . . . 7 (𝜑𝐴𝑋)
2 mndodconglem.3 . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) ∈ ℕ)
32nnred 11506 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ∈ ℝ)
43recnd 10520 . . . . . . . . 9 (𝜑 → (𝑂𝐴) ∈ ℂ)
5 mndodconglem.4 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
65nn0red 11809 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
76recnd 10520 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
8 mndodconglem.5 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
98nn0red 11809 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
109recnd 10520 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
114, 7, 10addsubassd 10870 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) = ((𝑂𝐴) + (𝑀𝑁)))
122nnzd 11940 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐴) ∈ ℤ)
135nn0zd 11939 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1412, 13zaddcld 11945 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℤ)
1514zred 11941 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℝ)
16 mndodconglem.7 . . . . . . . . . 10 (𝜑𝑁 < (𝑂𝐴))
17 nn0addge1 11796 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
183, 5, 17syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
199, 3, 15, 16, 18ltletrd 10652 . . . . . . . . 9 (𝜑𝑁 < ((𝑂𝐴) + 𝑀))
208nn0zd 11939 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
21 znnsub 11882 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑂𝐴) + 𝑀) ∈ ℤ) → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2220, 14, 21syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2319, 22mpbid 233 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ)
2411, 23eqeltrrd 2884 . . . . . . 7 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ)
254, 7, 10addsub12d 10873 . . . . . . . . 9 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) = (𝑀 + ((𝑂𝐴) − 𝑁)))
2625oveq1d 7036 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴))
27 mndodconglem.8 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2827oveq1d 7036 . . . . . . . . . 10 (𝜑 → ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
29 mndodconglem.1 . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
30 znnsub 11882 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3120, 12, 30syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3216, 31mpbid 233 . . . . . . . . . . . 12 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ)
3332nnnn0d 11808 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ0)
34 odcl.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
35 odid.3 . . . . . . . . . . . 12 · = (.g𝐺)
36 eqid 2795 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
3734, 35, 36mulgnn0dir 18016 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3829, 5, 33, 1, 37syl13anc 1365 . . . . . . . . . 10 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3934, 35, 36mulgnn0dir 18016 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4029, 8, 33, 1, 39syl13anc 1365 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4128, 38, 403eqtr4d 2841 . . . . . . . . 9 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴))
4210, 4pncan3d 10853 . . . . . . . . . . 11 (𝜑 → (𝑁 + ((𝑂𝐴) − 𝑁)) = (𝑂𝐴))
4342oveq1d 7036 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑂𝐴) · 𝐴))
44 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
45 odid.4 . . . . . . . . . . . 12 0 = (0g𝐺)
4634, 44, 35, 45odid 18402 . . . . . . . . . . 11 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
471, 46syl 17 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) · 𝐴) = 0 )
4843, 47eqtrd 2831 . . . . . . . . 9 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
4941, 48eqtrd 2831 . . . . . . . 8 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
5026, 49eqtrd 2831 . . . . . . 7 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 )
5134, 44, 35, 45odlem2 18403 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ ∧ (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
521, 24, 50, 51syl3anc 1364 . . . . . 6 (𝜑 → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
53 elfzle2 12766 . . . . . 6 ((𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))) → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5452, 53syl 17 . . . . 5 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5513, 20zsubcld 11946 . . . . . . 7 (𝜑 → (𝑀𝑁) ∈ ℤ)
5655zred 11941 . . . . . 6 (𝜑 → (𝑀𝑁) ∈ ℝ)
573, 56addge01d 11081 . . . . 5 (𝜑 → (0 ≤ (𝑀𝑁) ↔ (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁))))
5854, 57mpbird 258 . . . 4 (𝜑 → 0 ≤ (𝑀𝑁))
596, 9subge0d 11083 . . . 4 (𝜑 → (0 ≤ (𝑀𝑁) ↔ 𝑁𝑀))
6058, 59mpbid 233 . . 3 (𝜑𝑁𝑀)
616, 9letri3d 10634 . . . 4 (𝜑 → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6261biimprd 249 . . 3 (𝜑 → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6360, 62mpan2d 690 . 2 (𝜑 → (𝑀𝑁𝑀 = 𝑁))
6463imp 407 1 ((𝜑𝑀𝑁) → 𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081   class class class wbr 4966  cfv 6230  (class class class)co 7021  cr 10387  0cc0 10388  1c1 10389   + caddc 10391   < clt 10526  cle 10527  cmin 10722  cn 11491  0cn0 11750  cz 11834  ...cfz 12747  Basecbs 16317  +gcplusg 16399  0gc0g 16547  Mndcmnd 17738  .gcmg 17986  odcod 18388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-sup 8757  df-inf 8758  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-n0 11751  df-z 11835  df-uz 12099  df-fz 12748  df-seq 13225  df-0g 16549  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-mulg 17987  df-od 18392
This theorem is referenced by:  mndodcong  18406
  Copyright terms: Public domain W3C validator