Proof of Theorem mndodconglem
Step | Hyp | Ref
| Expression |
1 | | mndodconglem.2 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
2 | | mndodconglem.3 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘𝐴) ∈ ℕ) |
3 | 2 | nnred 11988 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) |
4 | 3 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘𝐴) ∈ ℂ) |
5 | | mndodconglem.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
6 | 5 | nn0red 12294 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℝ) |
7 | 6 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℂ) |
8 | | mndodconglem.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
9 | 8 | nn0red 12294 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℝ) |
10 | 9 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℂ) |
11 | 4, 7, 10 | addsubassd 11352 |
. . . . . . . 8
⊢ (𝜑 → (((𝑂‘𝐴) + 𝑀) − 𝑁) = ((𝑂‘𝐴) + (𝑀 − 𝑁))) |
12 | 2 | nnzd 12425 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑂‘𝐴) ∈ ℤ) |
13 | 5 | nn0zd 12424 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
14 | 12, 13 | zaddcld 12430 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑂‘𝐴) + 𝑀) ∈ ℤ) |
15 | 14 | zred 12426 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑂‘𝐴) + 𝑀) ∈ ℝ) |
16 | | mndodconglem.7 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 < (𝑂‘𝐴)) |
17 | | nn0addge1 12279 |
. . . . . . . . . . 11
⊢ (((𝑂‘𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑂‘𝐴) ≤ ((𝑂‘𝐴) + 𝑀)) |
18 | 3, 5, 17 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘𝐴) ≤ ((𝑂‘𝐴) + 𝑀)) |
19 | 9, 3, 15, 16, 18 | ltletrd 11135 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 < ((𝑂‘𝐴) + 𝑀)) |
20 | 8 | nn0zd 12424 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
21 | | znnsub 12366 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ ((𝑂‘𝐴) + 𝑀) ∈ ℤ) → (𝑁 < ((𝑂‘𝐴) + 𝑀) ↔ (((𝑂‘𝐴) + 𝑀) − 𝑁) ∈ ℕ)) |
22 | 20, 14, 21 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 < ((𝑂‘𝐴) + 𝑀) ↔ (((𝑂‘𝐴) + 𝑀) − 𝑁) ∈ ℕ)) |
23 | 19, 22 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (((𝑂‘𝐴) + 𝑀) − 𝑁) ∈ ℕ) |
24 | 11, 23 | eqeltrrd 2840 |
. . . . . . 7
⊢ (𝜑 → ((𝑂‘𝐴) + (𝑀 − 𝑁)) ∈ ℕ) |
25 | 4, 7, 10 | addsub12d 11355 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘𝐴) + (𝑀 − 𝑁)) = (𝑀 + ((𝑂‘𝐴) − 𝑁))) |
26 | 25 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝜑 → (((𝑂‘𝐴) + (𝑀 − 𝑁)) · 𝐴) = ((𝑀 + ((𝑂‘𝐴) − 𝑁)) · 𝐴)) |
27 | | mndodconglem.8 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴)) |
28 | 27 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) − 𝑁) · 𝐴)) = ((𝑁 · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) − 𝑁) · 𝐴))) |
29 | | mndodconglem.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ Mnd) |
30 | | znnsub 12366 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → (𝑁 < (𝑂‘𝐴) ↔ ((𝑂‘𝐴) − 𝑁) ∈ ℕ)) |
31 | 20, 12, 30 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 < (𝑂‘𝐴) ↔ ((𝑂‘𝐴) − 𝑁) ∈ ℕ)) |
32 | 16, 31 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑂‘𝐴) − 𝑁) ∈ ℕ) |
33 | 32 | nnnn0d 12293 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑂‘𝐴) − 𝑁) ∈
ℕ0) |
34 | | odcl.1 |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝐺) |
35 | | odid.3 |
. . . . . . . . . . . 12
⊢ · =
(.g‘𝐺) |
36 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
37 | 34, 35, 36 | mulgnn0dir 18733 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ ((𝑂‘𝐴) − 𝑁) ∈ ℕ0 ∧ 𝐴 ∈ 𝑋)) → ((𝑀 + ((𝑂‘𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) − 𝑁) · 𝐴))) |
38 | 29, 5, 33, 1, 37 | syl13anc 1371 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 + ((𝑂‘𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) − 𝑁) · 𝐴))) |
39 | 34, 35, 36 | mulgnn0dir 18733 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ0
∧ ((𝑂‘𝐴) − 𝑁) ∈ ℕ0 ∧ 𝐴 ∈ 𝑋)) → ((𝑁 + ((𝑂‘𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) − 𝑁) · 𝐴))) |
40 | 29, 8, 33, 1, 39 | syl13anc 1371 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁 + ((𝑂‘𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) − 𝑁) · 𝐴))) |
41 | 28, 38, 40 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 + ((𝑂‘𝐴) − 𝑁)) · 𝐴) = ((𝑁 + ((𝑂‘𝐴) − 𝑁)) · 𝐴)) |
42 | 10, 4 | pncan3d 11335 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + ((𝑂‘𝐴) − 𝑁)) = (𝑂‘𝐴)) |
43 | 42 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁 + ((𝑂‘𝐴) − 𝑁)) · 𝐴) = ((𝑂‘𝐴) · 𝐴)) |
44 | | odcl.2 |
. . . . . . . . . . . 12
⊢ 𝑂 = (od‘𝐺) |
45 | | odid.4 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐺) |
46 | 34, 44, 35, 45 | odid 19146 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
47 | 1, 46 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
48 | 43, 47 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 + ((𝑂‘𝐴) − 𝑁)) · 𝐴) = 0 ) |
49 | 41, 48 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → ((𝑀 + ((𝑂‘𝐴) − 𝑁)) · 𝐴) = 0 ) |
50 | 26, 49 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (((𝑂‘𝐴) + (𝑀 − 𝑁)) · 𝐴) = 0 ) |
51 | 34, 44, 35, 45 | odlem2 19147 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑂‘𝐴) + (𝑀 − 𝑁)) ∈ ℕ ∧ (((𝑂‘𝐴) + (𝑀 − 𝑁)) · 𝐴) = 0 ) → (𝑂‘𝐴) ∈ (1...((𝑂‘𝐴) + (𝑀 − 𝑁)))) |
52 | 1, 24, 50, 51 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝑂‘𝐴) ∈ (1...((𝑂‘𝐴) + (𝑀 − 𝑁)))) |
53 | | elfzle2 13260 |
. . . . . 6
⊢ ((𝑂‘𝐴) ∈ (1...((𝑂‘𝐴) + (𝑀 − 𝑁))) → (𝑂‘𝐴) ≤ ((𝑂‘𝐴) + (𝑀 − 𝑁))) |
54 | 52, 53 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑂‘𝐴) ≤ ((𝑂‘𝐴) + (𝑀 − 𝑁))) |
55 | 13, 20 | zsubcld 12431 |
. . . . . . 7
⊢ (𝜑 → (𝑀 − 𝑁) ∈ ℤ) |
56 | 55 | zred 12426 |
. . . . . 6
⊢ (𝜑 → (𝑀 − 𝑁) ∈ ℝ) |
57 | 3, 56 | addge01d 11563 |
. . . . 5
⊢ (𝜑 → (0 ≤ (𝑀 − 𝑁) ↔ (𝑂‘𝐴) ≤ ((𝑂‘𝐴) + (𝑀 − 𝑁)))) |
58 | 54, 57 | mpbird 256 |
. . . 4
⊢ (𝜑 → 0 ≤ (𝑀 − 𝑁)) |
59 | 6, 9 | subge0d 11565 |
. . . 4
⊢ (𝜑 → (0 ≤ (𝑀 − 𝑁) ↔ 𝑁 ≤ 𝑀)) |
60 | 58, 59 | mpbid 231 |
. . 3
⊢ (𝜑 → 𝑁 ≤ 𝑀) |
61 | 6, 9 | letri3d 11117 |
. . . 4
⊢ (𝜑 → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
62 | 61 | biimprd 247 |
. . 3
⊢ (𝜑 → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 𝑀 = 𝑁)) |
63 | 60, 62 | mpan2d 691 |
. 2
⊢ (𝜑 → (𝑀 ≤ 𝑁 → 𝑀 = 𝑁)) |
64 | 63 | imp 407 |
1
⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑀 = 𝑁) |