MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1rid Structured version   Visualization version   GIF version

Theorem pj1rid 19615
Description: The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1rid ((𝜑𝑋𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 )

Proof of Theorem pj1rid
StepHypRef Expression
1 pj1eu.2 . . . . . . 7 (𝜑𝑇 ∈ (SubGrp‘𝐺))
21adantr 480 . . . . . 6 ((𝜑𝑋𝑈) → 𝑇 ∈ (SubGrp‘𝐺))
3 subgrcl 19044 . . . . . 6 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . 5 ((𝜑𝑋𝑈) → 𝐺 ∈ Grp)
5 pj1eu.3 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
6 eqid 2731 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
76subgss 19040 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
85, 7syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝐺))
98sselda 3934 . . . . 5 ((𝜑𝑋𝑈) → 𝑋 ∈ (Base‘𝐺))
10 pj1eu.a . . . . . 6 + = (+g𝐺)
11 pj1eu.o . . . . . 6 0 = (0g𝐺)
126, 10, 11grplid 18880 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺)) → ( 0 + 𝑋) = 𝑋)
134, 9, 12syl2anc 584 . . . 4 ((𝜑𝑋𝑈) → ( 0 + 𝑋) = 𝑋)
1413eqcomd 2737 . . 3 ((𝜑𝑋𝑈) → 𝑋 = ( 0 + 𝑋))
15 pj1eu.s . . . 4 = (LSSum‘𝐺)
16 pj1eu.z . . . 4 𝑍 = (Cntz‘𝐺)
175adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑈 ∈ (SubGrp‘𝐺))
18 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
1918adantr 480 . . . 4 ((𝜑𝑋𝑈) → (𝑇𝑈) = { 0 })
20 pj1eu.5 . . . . 5 (𝜑𝑇 ⊆ (𝑍𝑈))
2120adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑇 ⊆ (𝑍𝑈))
22 pj1f.p . . . 4 𝑃 = (proj1𝐺)
2315lsmub2 19571 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (𝑇 𝑈))
241, 5, 23syl2anc 584 . . . . 5 (𝜑𝑈 ⊆ (𝑇 𝑈))
2524sselda 3934 . . . 4 ((𝜑𝑋𝑈) → 𝑋 ∈ (𝑇 𝑈))
2611subg0cl 19047 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 0𝑇)
272, 26syl 17 . . . 4 ((𝜑𝑋𝑈) → 0𝑇)
28 simpr 484 . . . 4 ((𝜑𝑋𝑈) → 𝑋𝑈)
2910, 15, 11, 16, 2, 17, 19, 21, 22, 25, 27, 28pj1eq 19613 . . 3 ((𝜑𝑋𝑈) → (𝑋 = ( 0 + 𝑋) ↔ (((𝑇𝑃𝑈)‘𝑋) = 0 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝑋)))
3014, 29mpbid 232 . 2 ((𝜑𝑋𝑈) → (((𝑇𝑃𝑈)‘𝑋) = 0 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝑋))
3130simpld 494 1 ((𝜑𝑋𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cin 3901  wss 3902  {csn 4576  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  SubGrpcsubg 19033  Cntzccntz 19228  LSSumclsm 19547  proj1cpj1 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-lsm 19549  df-pj1 19550
This theorem is referenced by:  dpjidcl  19973
  Copyright terms: Public domain W3C validator