Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pj1rid | Structured version Visualization version GIF version |
Description: The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
pj1eu.a | ⊢ + = (+g‘𝐺) |
pj1eu.s | ⊢ ⊕ = (LSSum‘𝐺) |
pj1eu.o | ⊢ 0 = (0g‘𝐺) |
pj1eu.z | ⊢ 𝑍 = (Cntz‘𝐺) |
pj1eu.2 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
pj1eu.3 | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
pj1eu.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
pj1eu.5 | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
pj1f.p | ⊢ 𝑃 = (proj1‘𝐺) |
Ref | Expression |
---|---|
pj1rid | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.2 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
2 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑇 ∈ (SubGrp‘𝐺)) |
3 | subgrcl 18856 | . . . . . 6 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝐺 ∈ Grp) |
5 | pj1eu.3 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
6 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | 6 | subgss 18852 | . . . . . . 7 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
9 | 8 | sselda 3932 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝐺)) |
10 | pj1eu.a | . . . . . 6 ⊢ + = (+g‘𝐺) | |
11 | pj1eu.o | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
12 | 6, 10, 11 | grplid 18705 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺)) → ( 0 + 𝑋) = 𝑋) |
13 | 4, 9, 12 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → ( 0 + 𝑋) = 𝑋) |
14 | 13 | eqcomd 2742 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 = ( 0 + 𝑋)) |
15 | pj1eu.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
16 | pj1eu.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
17 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ (SubGrp‘𝐺)) |
18 | pj1eu.4 | . . . . 5 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
19 | 18 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑇 ∩ 𝑈) = { 0 }) |
20 | pj1eu.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
21 | 20 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑇 ⊆ (𝑍‘𝑈)) |
22 | pj1f.p | . . . 4 ⊢ 𝑃 = (proj1‘𝐺) | |
23 | 15 | lsmub2 19359 | . . . . . 6 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
24 | 1, 5, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
25 | 24 | sselda 3932 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (𝑇 ⊕ 𝑈)) |
26 | 11 | subg0cl 18859 | . . . . 5 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑇) |
27 | 2, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 0 ∈ 𝑇) |
28 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
29 | 10, 15, 11, 16, 2, 17, 19, 21, 22, 25, 27, 28 | pj1eq 19401 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑋 = ( 0 + 𝑋) ↔ (((𝑇𝑃𝑈)‘𝑋) = 0 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝑋))) |
30 | 14, 29 | mpbid 231 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (((𝑇𝑃𝑈)‘𝑋) = 0 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝑋)) |
31 | 30 | simpld 495 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∩ cin 3897 ⊆ wss 3898 {csn 4573 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 +gcplusg 17059 0gc0g 17247 Grpcgrp 18673 SubGrpcsubg 18845 Cntzccntz 19017 LSSumclsm 19335 proj1cpj1 19336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-cntz 19019 df-lsm 19337 df-pj1 19338 |
This theorem is referenced by: dpjidcl 19756 |
Copyright terms: Public domain | W3C validator |