MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1rid Structured version   Visualization version   GIF version

Theorem pj1rid 19403
Description: The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1rid ((𝜑𝑋𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 )

Proof of Theorem pj1rid
StepHypRef Expression
1 pj1eu.2 . . . . . . 7 (𝜑𝑇 ∈ (SubGrp‘𝐺))
21adantr 481 . . . . . 6 ((𝜑𝑋𝑈) → 𝑇 ∈ (SubGrp‘𝐺))
3 subgrcl 18856 . . . . . 6 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . 5 ((𝜑𝑋𝑈) → 𝐺 ∈ Grp)
5 pj1eu.3 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
6 eqid 2736 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
76subgss 18852 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
85, 7syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝐺))
98sselda 3932 . . . . 5 ((𝜑𝑋𝑈) → 𝑋 ∈ (Base‘𝐺))
10 pj1eu.a . . . . . 6 + = (+g𝐺)
11 pj1eu.o . . . . . 6 0 = (0g𝐺)
126, 10, 11grplid 18705 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺)) → ( 0 + 𝑋) = 𝑋)
134, 9, 12syl2anc 584 . . . 4 ((𝜑𝑋𝑈) → ( 0 + 𝑋) = 𝑋)
1413eqcomd 2742 . . 3 ((𝜑𝑋𝑈) → 𝑋 = ( 0 + 𝑋))
15 pj1eu.s . . . 4 = (LSSum‘𝐺)
16 pj1eu.z . . . 4 𝑍 = (Cntz‘𝐺)
175adantr 481 . . . 4 ((𝜑𝑋𝑈) → 𝑈 ∈ (SubGrp‘𝐺))
18 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
1918adantr 481 . . . 4 ((𝜑𝑋𝑈) → (𝑇𝑈) = { 0 })
20 pj1eu.5 . . . . 5 (𝜑𝑇 ⊆ (𝑍𝑈))
2120adantr 481 . . . 4 ((𝜑𝑋𝑈) → 𝑇 ⊆ (𝑍𝑈))
22 pj1f.p . . . 4 𝑃 = (proj1𝐺)
2315lsmub2 19359 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (𝑇 𝑈))
241, 5, 23syl2anc 584 . . . . 5 (𝜑𝑈 ⊆ (𝑇 𝑈))
2524sselda 3932 . . . 4 ((𝜑𝑋𝑈) → 𝑋 ∈ (𝑇 𝑈))
2611subg0cl 18859 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 0𝑇)
272, 26syl 17 . . . 4 ((𝜑𝑋𝑈) → 0𝑇)
28 simpr 485 . . . 4 ((𝜑𝑋𝑈) → 𝑋𝑈)
2910, 15, 11, 16, 2, 17, 19, 21, 22, 25, 27, 28pj1eq 19401 . . 3 ((𝜑𝑋𝑈) → (𝑋 = ( 0 + 𝑋) ↔ (((𝑇𝑃𝑈)‘𝑋) = 0 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝑋)))
3014, 29mpbid 231 . 2 ((𝜑𝑋𝑈) → (((𝑇𝑃𝑈)‘𝑋) = 0 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝑋))
3130simpld 495 1 ((𝜑𝑋𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cin 3897  wss 3898  {csn 4573  cfv 6479  (class class class)co 7337  Basecbs 17009  +gcplusg 17059  0gc0g 17247  Grpcgrp 18673  SubGrpcsubg 18845  Cntzccntz 19017  LSSumclsm 19335  proj1cpj1 19336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-grp 18676  df-minusg 18677  df-sbg 18678  df-subg 18848  df-cntz 19019  df-lsm 19337  df-pj1 19338
This theorem is referenced by:  dpjidcl  19756
  Copyright terms: Public domain W3C validator