MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1rid Structured version   Visualization version   GIF version

Theorem pj1rid 19618
Description: The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1rid ((𝜑𝑋𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 )

Proof of Theorem pj1rid
StepHypRef Expression
1 pj1eu.2 . . . . . . 7 (𝜑𝑇 ∈ (SubGrp‘𝐺))
21adantr 480 . . . . . 6 ((𝜑𝑋𝑈) → 𝑇 ∈ (SubGrp‘𝐺))
3 subgrcl 19048 . . . . . 6 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . 5 ((𝜑𝑋𝑈) → 𝐺 ∈ Grp)
5 pj1eu.3 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
6 eqid 2733 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
76subgss 19044 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
85, 7syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝐺))
98sselda 3930 . . . . 5 ((𝜑𝑋𝑈) → 𝑋 ∈ (Base‘𝐺))
10 pj1eu.a . . . . . 6 + = (+g𝐺)
11 pj1eu.o . . . . . 6 0 = (0g𝐺)
126, 10, 11grplid 18884 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺)) → ( 0 + 𝑋) = 𝑋)
134, 9, 12syl2anc 584 . . . 4 ((𝜑𝑋𝑈) → ( 0 + 𝑋) = 𝑋)
1413eqcomd 2739 . . 3 ((𝜑𝑋𝑈) → 𝑋 = ( 0 + 𝑋))
15 pj1eu.s . . . 4 = (LSSum‘𝐺)
16 pj1eu.z . . . 4 𝑍 = (Cntz‘𝐺)
175adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑈 ∈ (SubGrp‘𝐺))
18 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
1918adantr 480 . . . 4 ((𝜑𝑋𝑈) → (𝑇𝑈) = { 0 })
20 pj1eu.5 . . . . 5 (𝜑𝑇 ⊆ (𝑍𝑈))
2120adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑇 ⊆ (𝑍𝑈))
22 pj1f.p . . . 4 𝑃 = (proj1𝐺)
2315lsmub2 19574 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (𝑇 𝑈))
241, 5, 23syl2anc 584 . . . . 5 (𝜑𝑈 ⊆ (𝑇 𝑈))
2524sselda 3930 . . . 4 ((𝜑𝑋𝑈) → 𝑋 ∈ (𝑇 𝑈))
2611subg0cl 19051 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 0𝑇)
272, 26syl 17 . . . 4 ((𝜑𝑋𝑈) → 0𝑇)
28 simpr 484 . . . 4 ((𝜑𝑋𝑈) → 𝑋𝑈)
2910, 15, 11, 16, 2, 17, 19, 21, 22, 25, 27, 28pj1eq 19616 . . 3 ((𝜑𝑋𝑈) → (𝑋 = ( 0 + 𝑋) ↔ (((𝑇𝑃𝑈)‘𝑋) = 0 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝑋)))
3014, 29mpbid 232 . 2 ((𝜑𝑋𝑈) → (((𝑇𝑃𝑈)‘𝑋) = 0 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝑋))
3130simpld 494 1 ((𝜑𝑋𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cin 3897  wss 3898  {csn 4577  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  0gc0g 17347  Grpcgrp 18850  SubGrpcsubg 19037  Cntzccntz 19231  LSSumclsm 19550  proj1cpj1 19551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-subg 19040  df-cntz 19233  df-lsm 19552  df-pj1 19553
This theorem is referenced by:  dpjidcl  19976
  Copyright terms: Public domain W3C validator