![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsymgbas | Structured version Visualization version GIF version |
Description: Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) |
Ref | Expression |
---|---|
symgbas.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgbas.2 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
elsymgbas | ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3455 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ V) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 → 𝐹 ∈ V)) |
3 | f1of 6488 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹:𝐴⟶𝐴) | |
4 | fex 6860 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
5 | 4 | expcom 414 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴⟶𝐴 → 𝐹 ∈ V)) |
6 | 3, 5 | syl5 34 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 ∈ V)) |
7 | symgbas.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
8 | symgbas.2 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
9 | 7, 8 | elsymgbas2 18245 | . . 3 ⊢ (𝐹 ∈ V → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) |
10 | 9 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ V → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴))) |
11 | 2, 6, 10 | pm5.21ndd 381 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ⟶wf 6226 –1-1-onto→wf1o 6229 ‘cfv 6230 Basecbs 16317 SymGrpcsymg 18241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-1st 7550 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-oadd 7962 df-er 8144 df-map 8263 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-3 11554 df-4 11555 df-5 11556 df-6 11557 df-7 11558 df-8 11559 df-9 11560 df-n0 11751 df-z 11835 df-uz 12099 df-fz 12748 df-struct 16319 df-ndx 16320 df-slot 16321 df-base 16323 df-plusg 16412 df-tset 16418 df-symg 18242 |
This theorem is referenced by: symggrp 18264 symgid 18265 galactghm 18267 lactghmga 18268 idresperm 18273 symgextsymg 18288 mdetunilem7 20916 mdetunilem8 20917 symgtgp 22398 cycpmconjv 30426 cycpmrn 30427 cycpmconjs 30441 cyc3conja 30442 |
Copyright terms: Public domain | W3C validator |