MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdel Structured version   Visualization version   GIF version

Theorem pmtrdifwrdel 19275
Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
pmtrdifwrdel 𝑤 ∈ Word 𝑇𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑢,𝐾   𝑖,𝑁,𝑢   𝑇,𝑖   𝑅,𝑖,𝑢   𝑤,𝑖,𝑥,𝑢
Allowed substitution hints:   𝑅(𝑥,𝑤)   𝑇(𝑤,𝑢)   𝐾(𝑥,𝑤,𝑖)   𝑁(𝑤)

Proof of Theorem pmtrdifwrdel
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 fveq2 6846 . . . . . . . 8 (𝑗 = 𝑛 → (𝑤𝑗) = (𝑤𝑛))
43difeq1d 4085 . . . . . . 7 (𝑗 = 𝑛 → ((𝑤𝑗) ∖ I ) = ((𝑤𝑛) ∖ I ))
54dmeqd 5865 . . . . . 6 (𝑗 = 𝑛 → dom ((𝑤𝑗) ∖ I ) = dom ((𝑤𝑛) ∖ I ))
65fveq2d 6850 . . . . 5 (𝑗 = 𝑛 → ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑤𝑛) ∖ I )))
76cbvmptv 5222 . . . 4 (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) = (𝑛 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑛) ∖ I )))
81, 2, 7pmtrdifwrdellem1 19271 . . 3 (𝑤 ∈ Word 𝑇 → (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅)
91, 2, 7pmtrdifwrdellem2 19272 . . 3 (𝑤 ∈ Word 𝑇 → (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
101, 2, 7pmtrdifwrdellem3 19273 . . 3 (𝑤 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
11 fveq2 6846 . . . . . 6 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (♯‘𝑢) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
1211eqeq2d 2744 . . . . 5 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((♯‘𝑤) = (♯‘𝑢) ↔ (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))))))
13 fveq1 6845 . . . . . . . 8 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (𝑢𝑖) = ((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖))
1413fveq1d 6848 . . . . . . 7 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((𝑢𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
1514eqeq2d 2744 . . . . . 6 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥) ↔ ((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
16152ralbidv 3209 . . . . 5 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
1712, 16anbi12d 632 . . . 4 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥)) ↔ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))))
1817rspcev 3583 . . 3 (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅 ∧ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))) → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥)))
198, 9, 10, 18syl12anc 836 . 2 (𝑤 ∈ Word 𝑇 → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥)))
2019rgen 3063 1 𝑤 ∈ Word 𝑇𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  wral 3061  wrex 3070  cdif 3911  {csn 4590  cmpt 5192   I cid 5534  dom cdm 5637  ran crn 5638  cfv 6500  (class class class)co 7361  0cc0 11059  ..^cfzo 13576  chash 14239  Word cword 14411  pmTrspcpmtr 19231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-fzo 13577  df-hash 14240  df-word 14412  df-pmtr 19232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator