Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrdifwrdel | Structured version Visualization version GIF version |
Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
Ref | Expression |
---|---|
pmtrdifwrdel | ⊢ ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.r | . . . 4 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
3 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → (𝑤‘𝑗) = (𝑤‘𝑛)) | |
4 | 3 | difeq1d 4052 | . . . . . . 7 ⊢ (𝑗 = 𝑛 → ((𝑤‘𝑗) ∖ I ) = ((𝑤‘𝑛) ∖ I )) |
5 | 4 | dmeqd 5803 | . . . . . 6 ⊢ (𝑗 = 𝑛 → dom ((𝑤‘𝑗) ∖ I ) = dom ((𝑤‘𝑛) ∖ I )) |
6 | 5 | fveq2d 6760 | . . . . 5 ⊢ (𝑗 = 𝑛 → ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑛) ∖ I ))) |
7 | 6 | cbvmptv 5183 | . . . 4 ⊢ (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) = (𝑛 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑛) ∖ I ))) |
8 | 1, 2, 7 | pmtrdifwrdellem1 19004 | . . 3 ⊢ (𝑤 ∈ Word 𝑇 → (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) ∈ Word 𝑅) |
9 | 1, 2, 7 | pmtrdifwrdellem2 19005 | . . 3 ⊢ (𝑤 ∈ Word 𝑇 → (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))))) |
10 | 1, 2, 7 | pmtrdifwrdellem3 19006 | . . 3 ⊢ (𝑤 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥)) |
11 | fveq2 6756 | . . . . . 6 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (♯‘𝑢) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))))) | |
12 | 11 | eqeq2d 2749 | . . . . 5 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → ((♯‘𝑤) = (♯‘𝑢) ↔ (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))))) |
13 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (𝑢‘𝑖) = ((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)) | |
14 | 13 | fveq1d 6758 | . . . . . . 7 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → ((𝑢‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥)) |
15 | 14 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥) ↔ ((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥))) |
16 | 15 | 2ralbidv 3122 | . . . . 5 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥))) |
17 | 12, 16 | anbi12d 630 | . . . 4 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) ↔ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥)))) |
18 | 17 | rspcev 3552 | . . 3 ⊢ (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) ∈ Word 𝑅 ∧ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥))) → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥))) |
19 | 8, 9, 10, 18 | syl12anc 833 | . 2 ⊢ (𝑤 ∈ Word 𝑇 → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥))) |
20 | 19 | rgen 3073 | 1 ⊢ ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∖ cdif 3880 {csn 4558 ↦ cmpt 5153 I cid 5479 dom cdm 5580 ran crn 5581 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ..^cfzo 13311 ♯chash 13972 Word cword 14145 pmTrspcpmtr 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-pmtr 18965 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |