![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrdifwrdel | Structured version Visualization version GIF version |
Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
Ref | Expression |
---|---|
pmtrdifwrdel | ⊢ ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.r | . . . 4 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
3 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → (𝑤‘𝑗) = (𝑤‘𝑛)) | |
4 | 3 | difeq1d 4117 | . . . . . . 7 ⊢ (𝑗 = 𝑛 → ((𝑤‘𝑗) ∖ I ) = ((𝑤‘𝑛) ∖ I )) |
5 | 4 | dmeqd 5902 | . . . . . 6 ⊢ (𝑗 = 𝑛 → dom ((𝑤‘𝑗) ∖ I ) = dom ((𝑤‘𝑛) ∖ I )) |
6 | 5 | fveq2d 6895 | . . . . 5 ⊢ (𝑗 = 𝑛 → ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑛) ∖ I ))) |
7 | 6 | cbvmptv 5255 | . . . 4 ⊢ (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) = (𝑛 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑛) ∖ I ))) |
8 | 1, 2, 7 | pmtrdifwrdellem1 19420 | . . 3 ⊢ (𝑤 ∈ Word 𝑇 → (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) ∈ Word 𝑅) |
9 | 1, 2, 7 | pmtrdifwrdellem2 19421 | . . 3 ⊢ (𝑤 ∈ Word 𝑇 → (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))))) |
10 | 1, 2, 7 | pmtrdifwrdellem3 19422 | . . 3 ⊢ (𝑤 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥)) |
11 | fveq2 6891 | . . . . . 6 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (♯‘𝑢) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))))) | |
12 | 11 | eqeq2d 2738 | . . . . 5 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → ((♯‘𝑤) = (♯‘𝑢) ↔ (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))))) |
13 | fveq1 6890 | . . . . . . . 8 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (𝑢‘𝑖) = ((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)) | |
14 | 13 | fveq1d 6893 | . . . . . . 7 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → ((𝑢‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥)) |
15 | 14 | eqeq2d 2738 | . . . . . 6 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥) ↔ ((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥))) |
16 | 15 | 2ralbidv 3213 | . . . . 5 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥))) |
17 | 12, 16 | anbi12d 630 | . . . 4 ⊢ (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) → (((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) ↔ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥)))) |
18 | 17 | rspcev 3607 | . . 3 ⊢ (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I ))) ∈ Word 𝑅 ∧ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤‘𝑗) ∖ I )))‘𝑖)‘𝑥))) → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥))) |
19 | 8, 9, 10, 18 | syl12anc 836 | . 2 ⊢ (𝑤 ∈ Word 𝑇 → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥))) |
20 | 19 | rgen 3058 | 1 ⊢ ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 ∖ cdif 3941 {csn 4624 ↦ cmpt 5225 I cid 5569 dom cdm 5672 ran crn 5673 ‘cfv 6542 (class class class)co 7414 0cc0 11124 ..^cfzo 13645 ♯chash 14307 Word cword 14482 pmTrspcpmtr 19380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-fzo 13646 df-hash 14308 df-word 14483 df-pmtr 19381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |