MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdel2 Structured version   Visualization version   GIF version

Theorem pmtrdifwrdel2 19519
Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
pmtrdifwrdel2 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑢,𝐾   𝑖,𝑁,𝑢   𝑇,𝑖   𝑅,𝑖,𝑢   𝑤,𝑖,𝑥,𝑢   𝑖,𝐾,𝑤   𝑤,𝑁
Allowed substitution hints:   𝑅(𝑥,𝑤)   𝑇(𝑤,𝑢)   𝐾(𝑥)

Proof of Theorem pmtrdifwrdel2
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
3 fveq2 6907 . . . . . . . . 9 (𝑗 = 𝑛 → (𝑤𝑗) = (𝑤𝑛))
43difeq1d 4135 . . . . . . . 8 (𝑗 = 𝑛 → ((𝑤𝑗) ∖ I ) = ((𝑤𝑛) ∖ I ))
54dmeqd 5919 . . . . . . 7 (𝑗 = 𝑛 → dom ((𝑤𝑗) ∖ I ) = dom ((𝑤𝑛) ∖ I ))
65fveq2d 6911 . . . . . 6 (𝑗 = 𝑛 → ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑤𝑛) ∖ I )))
76cbvmptv 5261 . . . . 5 (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) = (𝑛 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑛) ∖ I )))
81, 2, 7pmtrdifwrdellem1 19514 . . . 4 (𝑤 ∈ Word 𝑇 → (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅)
98adantl 481 . . 3 ((𝐾𝑁𝑤 ∈ Word 𝑇) → (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅)
101, 2, 7pmtrdifwrdellem2 19515 . . . 4 (𝑤 ∈ Word 𝑇 → (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
1110adantl 481 . . 3 ((𝐾𝑁𝑤 ∈ Word 𝑇) → (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
121, 2, 7pmtrdifwrdel2lem1 19517 . . . . 5 ((𝑤 ∈ Word 𝑇𝐾𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾)
1312ancoms 458 . . . 4 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾)
141, 2, 7pmtrdifwrdellem3 19516 . . . . 5 (𝑤 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
1514adantl 481 . . . 4 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
16 r19.26 3109 . . . 4 (∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
1713, 15, 16sylanbrc 583 . . 3 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
18 fveq2 6907 . . . . . 6 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (♯‘𝑢) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
1918eqeq2d 2746 . . . . 5 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((♯‘𝑤) = (♯‘𝑢) ↔ (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))))))
20 fveq1 6906 . . . . . . . . 9 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (𝑢𝑖) = ((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖))
2120fveq1d 6909 . . . . . . . 8 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((𝑢𝑖)‘𝐾) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾))
2221eqeq1d 2737 . . . . . . 7 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((𝑢𝑖)‘𝐾) = 𝐾 ↔ (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾))
2320fveq1d 6909 . . . . . . . . 9 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((𝑢𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
2423eqeq2d 2746 . . . . . . . 8 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥) ↔ ((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
2524ralbidv 3176 . . . . . . 7 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
2622, 25anbi12d 632 . . . . . 6 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥)) ↔ ((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))))
2726ralbidv 3176 . . . . 5 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))))
2819, 27anbi12d 632 . . . 4 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))) ↔ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))))
2928rspcev 3622 . . 3 (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅 ∧ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))) → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
309, 11, 17, 29syl12anc 837 . 2 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
3130ralrimiva 3144 1 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cdif 3960  {csn 4631  cmpt 5231   I cid 5582  dom cdm 5689  ran crn 5690  cfv 6563  (class class class)co 7431  0cc0 11153  ..^cfzo 13691  chash 14366  Word cword 14549  pmTrspcpmtr 19474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-tset 17317  df-efmnd 18895  df-symg 19402  df-pmtr 19475
This theorem is referenced by:  psgndiflemA  21637
  Copyright terms: Public domain W3C validator