MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdel2 Structured version   Visualization version   GIF version

Theorem pmtrdifwrdel2 19009
Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
pmtrdifwrdel2 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑢,𝐾   𝑖,𝑁,𝑢   𝑇,𝑖   𝑅,𝑖,𝑢   𝑤,𝑖,𝑥,𝑢   𝑖,𝐾,𝑤   𝑤,𝑁
Allowed substitution hints:   𝑅(𝑥,𝑤)   𝑇(𝑤,𝑢)   𝐾(𝑥)

Proof of Theorem pmtrdifwrdel2
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
3 fveq2 6756 . . . . . . . . 9 (𝑗 = 𝑛 → (𝑤𝑗) = (𝑤𝑛))
43difeq1d 4052 . . . . . . . 8 (𝑗 = 𝑛 → ((𝑤𝑗) ∖ I ) = ((𝑤𝑛) ∖ I ))
54dmeqd 5803 . . . . . . 7 (𝑗 = 𝑛 → dom ((𝑤𝑗) ∖ I ) = dom ((𝑤𝑛) ∖ I ))
65fveq2d 6760 . . . . . 6 (𝑗 = 𝑛 → ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑤𝑛) ∖ I )))
76cbvmptv 5183 . . . . 5 (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) = (𝑛 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑛) ∖ I )))
81, 2, 7pmtrdifwrdellem1 19004 . . . 4 (𝑤 ∈ Word 𝑇 → (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅)
98adantl 481 . . 3 ((𝐾𝑁𝑤 ∈ Word 𝑇) → (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅)
101, 2, 7pmtrdifwrdellem2 19005 . . . 4 (𝑤 ∈ Word 𝑇 → (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
1110adantl 481 . . 3 ((𝐾𝑁𝑤 ∈ Word 𝑇) → (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
121, 2, 7pmtrdifwrdel2lem1 19007 . . . . 5 ((𝑤 ∈ Word 𝑇𝐾𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾)
1312ancoms 458 . . . 4 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾)
141, 2, 7pmtrdifwrdellem3 19006 . . . . 5 (𝑤 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
1514adantl 481 . . . 4 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
16 r19.26 3094 . . . 4 (∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
1713, 15, 16sylanbrc 582 . . 3 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
18 fveq2 6756 . . . . . 6 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (♯‘𝑢) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))))
1918eqeq2d 2749 . . . . 5 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((♯‘𝑤) = (♯‘𝑢) ↔ (♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))))))
20 fveq1 6755 . . . . . . . . 9 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (𝑢𝑖) = ((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖))
2120fveq1d 6758 . . . . . . . 8 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((𝑢𝑖)‘𝐾) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾))
2221eqeq1d 2740 . . . . . . 7 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((𝑢𝑖)‘𝐾) = 𝐾 ↔ (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾))
2320fveq1d 6758 . . . . . . . . 9 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((𝑢𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))
2423eqeq2d 2749 . . . . . . . 8 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥) ↔ ((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
2524ralbidv 3120 . . . . . . 7 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))
2622, 25anbi12d 630 . . . . . 6 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → ((((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥)) ↔ ((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))))
2726ralbidv 3120 . . . . 5 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥))))
2819, 27anbi12d 630 . . . 4 (𝑢 = (𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) → (((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))) ↔ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))))
2928rspcev 3552 . . 3 (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I ))) ∈ Word 𝑅 ∧ ((♯‘𝑤) = (♯‘(𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))((((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = (((𝑗 ∈ (0..^(♯‘𝑤)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑤𝑗) ∖ I )))‘𝑖)‘𝑥)))) → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
309, 11, 17, 29syl12anc 833 . 2 ((𝐾𝑁𝑤 ∈ Word 𝑇) → ∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
3130ralrimiva 3107 1 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑥) = ((𝑢𝑖)‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cdif 3880  {csn 4558  cmpt 5153   I cid 5479  dom cdm 5580  ran crn 5581  cfv 6418  (class class class)co 7255  0cc0 10802  ..^cfzo 13311  chash 13972  Word cword 14145  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-efmnd 18423  df-symg 18890  df-pmtr 18965
This theorem is referenced by:  psgndiflemA  20718
  Copyright terms: Public domain W3C validator