MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbaslem Structured version   Visualization version   GIF version

Theorem prdsbaslem 17467
Description: Lemma for prdsbas 17471 and similar theorems. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
prdsbaslem.u (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
prdsbaslem.1 𝐴 = (𝐸𝑈)
prdsbaslem.2 𝐸 = Slot (𝐸‘ndx)
prdsbaslem.3 (𝜑𝑇𝑉)
prdsbaslem.4 {⟨(𝐸‘ndx), 𝑇⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}))
Assertion
Ref Expression
prdsbaslem (𝜑𝐴 = 𝑇)

Proof of Theorem prdsbaslem
StepHypRef Expression
1 prdsbaslem.u . 2 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
2 prdsvalstr 17466 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})) Struct ⟨1, 15⟩
3 prdsbaslem.2 . 2 𝐸 = Slot (𝐸‘ndx)
4 prdsbaslem.4 . 2 {⟨(𝐸‘ndx), 𝑇⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}))
5 prdsbaslem.3 . 2 (𝜑𝑇𝑉)
6 prdsbaslem.1 . 2 𝐴 = (𝐸𝑈)
71, 2, 3, 4, 5, 6strfv3 17223 1 (𝜑𝐴 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cun 3924  wss 3926  {csn 4601  {cpr 4603  {ctp 4605  cop 4607  cfv 6531  1c1 11130  5c5 12298  cdc 12708  Slot cslot 17200  ndxcnx 17212  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  ·𝑖cip 17276  TopSetcts 17277  lecple 17278  distcds 17280  Hom chom 17282  compcco 17283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296
This theorem is referenced by:  prdssca  17470  prdsbas  17471  prdsplusg  17472  prdsmulr  17473  prdsvsca  17474  prdsip  17475  prdsle  17476  prdsds  17478  prdstset  17480  prdshom  17481  prdsco  17482
  Copyright terms: Public domain W3C validator