MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxusgrel Structured version   Visualization version   GIF version

Theorem uvtxusgrel 29129
Description: A universal vertex, i.e. an element of the set of all universal vertices, of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 31-Oct-2020.)
Hypotheses
Ref Expression
uvtxnbgr.v 𝑉 = (Vtx‘𝐺)
uvtxusgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtxusgrel (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸)))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑉   𝑘,𝑁
Allowed substitution hint:   𝐸(𝑘)

Proof of Theorem uvtxusgrel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 uvtxnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 uvtxusgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2uvtxusgr 29128 . . 3 (𝐺 ∈ USGraph → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸})
43eleq2d 2811 . 2 (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ 𝑁 ∈ {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸}))
5 sneq 4630 . . . . 5 (𝑣 = 𝑁 → {𝑣} = {𝑁})
65difeq2d 4114 . . . 4 (𝑣 = 𝑁 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑁}))
7 preq2 4730 . . . . 5 (𝑣 = 𝑁 → {𝑘, 𝑣} = {𝑘, 𝑁})
87eleq1d 2810 . . . 4 (𝑣 = 𝑁 → ({𝑘, 𝑣} ∈ 𝐸 ↔ {𝑘, 𝑁} ∈ 𝐸))
96, 8raleqbidv 3334 . . 3 (𝑣 = 𝑁 → (∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸 ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸))
109elrab 3675 . 2 (𝑁 ∈ {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸} ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸))
114, 10bitrdi 287 1 (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  {crab 3424  cdif 3937  {csn 4620  {cpr 4622  cfv 6533  Vtxcvtx 28725  Edgcedg 28776  USGraphcusgr 28878  UnivVtxcuvtx 29111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-fz 13482  df-hash 14288  df-edg 28777  df-upgr 28811  df-umgr 28812  df-usgr 28880  df-nbgr 29059  df-uvtx 29112
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator