MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagleadd1 Structured version   Visualization version   GIF version

Theorem psrbagleadd1 21948
Description: The analogue of "𝑋𝐹 implies 𝑋 + 𝐺𝐹 + 𝐺 " (compare leadd1d 11857) for bags. (Contributed by SN, 2-May-2025.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
psrbagleadd1.t 𝑇 = {𝑧𝐷𝑧r ≤ (𝐹f + 𝐺)}
Assertion
Ref Expression
psrbagleadd1 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∈ 𝑇)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑓,𝐺   𝑦,𝐷   𝑦,𝐹   𝑓,𝑋   𝑦,𝑋   𝑧,𝐷   𝑧,𝐹   𝑧,𝐺   𝑧,𝑋
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑧,𝑓)   𝑇(𝑦,𝑧,𝑓)   𝐺(𝑦)   𝐼(𝑦,𝑧)

Proof of Theorem psrbagleadd1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrabi 3687 . . . . 5 (𝑋 ∈ {𝑦𝐷𝑦r𝐹} → 𝑋𝐷)
2 psrbagconf1o.s . . . . 5 𝑆 = {𝑦𝐷𝑦r𝐹}
31, 2eleq2s 2859 . . . 4 (𝑋𝑆𝑋𝐷)
433ad2ant3 1136 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋𝐷)
5 simp2 1138 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐺𝐷)
6 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
76psrbagaddcl 21944 . . 3 ((𝑋𝐷𝐺𝐷) → (𝑋f + 𝐺) ∈ 𝐷)
84, 5, 7syl2anc 584 . 2 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∈ 𝐷)
96psrbagf 21938 . . . . . . . 8 (𝑋𝐷𝑋:𝐼⟶ℕ0)
104, 9syl 17 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋:𝐼⟶ℕ0)
1110ffvelcdmda 7104 . . . . . 6 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ ℕ0)
1211nn0red 12588 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ ℝ)
136psrbagf 21938 . . . . . . . 8 (𝐹𝐷𝐹:𝐼⟶ℕ0)
14133ad2ant1 1134 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐹:𝐼⟶ℕ0)
1514ffvelcdmda 7104 . . . . . 6 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
1615nn0red 12588 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
176psrbagf 21938 . . . . . . . 8 (𝐺𝐷𝐺:𝐼⟶ℕ0)
18173ad2ant2 1135 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐺:𝐼⟶ℕ0)
1918ffvelcdmda 7104 . . . . . 6 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
2019nn0red 12588 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
21 breq1 5146 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
2221, 2elrab2 3695 . . . . . . . . 9 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
2322simprbi 496 . . . . . . . 8 (𝑋𝑆𝑋r𝐹)
24233ad2ant3 1136 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋r𝐹)
259ffnd 6737 . . . . . . . . . 10 (𝑋𝐷𝑋 Fn 𝐼)
263, 25syl 17 . . . . . . . . 9 (𝑋𝑆𝑋 Fn 𝐼)
27263ad2ant3 1136 . . . . . . . 8 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋 Fn 𝐼)
2813ffnd 6737 . . . . . . . . 9 (𝐹𝐷𝐹 Fn 𝐼)
29283ad2ant1 1134 . . . . . . . 8 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐹 Fn 𝐼)
30 id 22 . . . . . . . . . 10 (𝐹𝐷𝐹𝐷)
3130, 28fndmexd 7926 . . . . . . . . 9 (𝐹𝐷𝐼 ∈ V)
32313ad2ant1 1134 . . . . . . . 8 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐼 ∈ V)
33 inidm 4227 . . . . . . . 8 (𝐼𝐼) = 𝐼
34 eqidd 2738 . . . . . . . 8 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) = (𝑋𝑥))
35 eqidd 2738 . . . . . . . 8 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3627, 29, 32, 32, 33, 34, 35ofrfval 7707 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋r𝐹 ↔ ∀𝑥𝐼 (𝑋𝑥) ≤ (𝐹𝑥)))
3724, 36mpbid 232 . . . . . 6 ((𝐹𝐷𝐺𝐷𝑋𝑆) → ∀𝑥𝐼 (𝑋𝑥) ≤ (𝐹𝑥))
3837r19.21bi 3251 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) ≤ (𝐹𝑥))
3912, 16, 20, 38leadd1dd 11877 . . . 4 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → ((𝑋𝑥) + (𝐺𝑥)) ≤ ((𝐹𝑥) + (𝐺𝑥)))
4039ralrimiva 3146 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → ∀𝑥𝐼 ((𝑋𝑥) + (𝐺𝑥)) ≤ ((𝐹𝑥) + (𝐺𝑥)))
416psrbagf 21938 . . . . . 6 ((𝑋f + 𝐺) ∈ 𝐷 → (𝑋f + 𝐺):𝐼⟶ℕ0)
4241ffnd 6737 . . . . 5 ((𝑋f + 𝐺) ∈ 𝐷 → (𝑋f + 𝐺) Fn 𝐼)
438, 42syl 17 . . . 4 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) Fn 𝐼)
446psrbagaddcl 21944 . . . . . 6 ((𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) ∈ 𝐷)
45443adant3 1133 . . . . 5 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝐹f + 𝐺) ∈ 𝐷)
466psrbagf 21938 . . . . . 6 ((𝐹f + 𝐺) ∈ 𝐷 → (𝐹f + 𝐺):𝐼⟶ℕ0)
4746ffnd 6737 . . . . 5 ((𝐹f + 𝐺) ∈ 𝐷 → (𝐹f + 𝐺) Fn 𝐼)
4845, 47syl 17 . . . 4 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝐹f + 𝐺) Fn 𝐼)
4917ffnd 6737 . . . . . 6 (𝐺𝐷𝐺 Fn 𝐼)
50493ad2ant2 1135 . . . . 5 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐺 Fn 𝐼)
51 eqidd 2738 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
5227, 50, 32, 32, 33, 34, 51ofval 7708 . . . 4 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → ((𝑋f + 𝐺)‘𝑥) = ((𝑋𝑥) + (𝐺𝑥)))
5329, 50, 32, 32, 33, 35, 51ofval 7708 . . . 4 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
5443, 48, 32, 32, 33, 52, 53ofrfval 7707 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → ((𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺) ↔ ∀𝑥𝐼 ((𝑋𝑥) + (𝐺𝑥)) ≤ ((𝐹𝑥) + (𝐺𝑥))))
5540, 54mpbird 257 . 2 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺))
56 breq1 5146 . . 3 (𝑧 = (𝑋f + 𝐺) → (𝑧r ≤ (𝐹f + 𝐺) ↔ (𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺)))
57 psrbagleadd1.t . . 3 𝑇 = {𝑧𝐷𝑧r ≤ (𝐹f + 𝐺)}
5856, 57elrab2 3695 . 2 ((𝑋f + 𝐺) ∈ 𝑇 ↔ ((𝑋f + 𝐺) ∈ 𝐷 ∧ (𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺)))
598, 55, 58sylanbrc 583 1 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  {crab 3436  Vcvv 3480   class class class wbr 5143  ccnv 5684  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  r cofr 7696  m cmap 8866  Fincfn 8985   + caddc 11158  cle 11296  cn 12266  0cn0 12526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-nn 12267  df-n0 12527
This theorem is referenced by:  psdmul  22170
  Copyright terms: Public domain W3C validator