Step | Hyp | Ref
| Expression |
1 | | elrabi 3673 |
. . . . 5
⊢ (𝑋 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} → 𝑋 ∈ 𝐷) |
2 | | psrbagconf1o.s |
. . . . 5
⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
3 | 1, 2 | eleq2s 2843 |
. . . 4
⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐷) |
4 | 3 | 3ad2ant3 1132 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐷) |
5 | | simp2 1134 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝐺 ∈ 𝐷) |
6 | | psrbag.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
7 | 6 | psrbagaddcl 21878 |
. . 3
⊢ ((𝑋 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝑋 ∘f + 𝐺) ∈ 𝐷) |
8 | 4, 5, 7 | syl2anc 582 |
. 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∘f + 𝐺) ∈ 𝐷) |
9 | 6 | psrbagf 21868 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐷 → 𝑋:𝐼⟶ℕ0) |
10 | 4, 9 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝑋:𝐼⟶ℕ0) |
11 | 10 | ffvelcdmda 7093 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈
ℕ0) |
12 | 11 | nn0red 12566 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ ℝ) |
13 | 6 | psrbagf 21868 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
14 | 13 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝐹:𝐼⟶ℕ0) |
15 | 14 | ffvelcdmda 7093 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈
ℕ0) |
16 | 15 | nn0red 12566 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ℝ) |
17 | 6 | psrbagf 21868 |
. . . . . . . 8
⊢ (𝐺 ∈ 𝐷 → 𝐺:𝐼⟶ℕ0) |
18 | 17 | 3ad2ant2 1131 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝐺:𝐼⟶ℕ0) |
19 | 18 | ffvelcdmda 7093 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈
ℕ0) |
20 | 19 | nn0red 12566 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ ℝ) |
21 | | breq1 5152 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → (𝑦 ∘r ≤ 𝐹 ↔ 𝑋 ∘r ≤ 𝐹)) |
22 | 21, 2 | elrab2 3682 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹)) |
23 | 22 | simprbi 495 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑆 → 𝑋 ∘r ≤ 𝐹) |
24 | 23 | 3ad2ant3 1132 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∘r ≤ 𝐹) |
25 | 9 | ffnd 6724 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐷 → 𝑋 Fn 𝐼) |
26 | 3, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑆 → 𝑋 Fn 𝐼) |
27 | 26 | 3ad2ant3 1132 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝑋 Fn 𝐼) |
28 | 13 | ffnd 6724 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼) |
29 | 28 | 3ad2ant1 1130 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝐹 Fn 𝐼) |
30 | | id 22 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷) |
31 | 30, 28 | fndmexd 7912 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐷 → 𝐼 ∈ V) |
32 | 31 | 3ad2ant1 1130 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝐼 ∈ V) |
33 | | inidm 4217 |
. . . . . . . 8
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
34 | | eqidd 2726 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) = (𝑋‘𝑥)) |
35 | | eqidd 2726 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
36 | 27, 29, 32, 32, 33, 34, 35 | ofrfval 7695 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 (𝑋‘𝑥) ≤ (𝐹‘𝑥))) |
37 | 24, 36 | mpbid 231 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → ∀𝑥 ∈ 𝐼 (𝑋‘𝑥) ≤ (𝐹‘𝑥)) |
38 | 37 | r19.21bi 3238 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ≤ (𝐹‘𝑥)) |
39 | 12, 16, 20, 38 | leadd1dd 11860 |
. . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → ((𝑋‘𝑥) + (𝐺‘𝑥)) ≤ ((𝐹‘𝑥) + (𝐺‘𝑥))) |
40 | 39 | ralrimiva 3135 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → ∀𝑥 ∈ 𝐼 ((𝑋‘𝑥) + (𝐺‘𝑥)) ≤ ((𝐹‘𝑥) + (𝐺‘𝑥))) |
41 | 6 | psrbagf 21868 |
. . . . . 6
⊢ ((𝑋 ∘f + 𝐺) ∈ 𝐷 → (𝑋 ∘f + 𝐺):𝐼⟶ℕ0) |
42 | 41 | ffnd 6724 |
. . . . 5
⊢ ((𝑋 ∘f + 𝐺) ∈ 𝐷 → (𝑋 ∘f + 𝐺) Fn 𝐼) |
43 | 8, 42 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∘f + 𝐺) Fn 𝐼) |
44 | 6 | psrbagaddcl 21878 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺) ∈ 𝐷) |
45 | 44 | 3adant3 1129 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝐹 ∘f + 𝐺) ∈ 𝐷) |
46 | 6 | psrbagf 21868 |
. . . . . 6
⊢ ((𝐹 ∘f + 𝐺) ∈ 𝐷 → (𝐹 ∘f + 𝐺):𝐼⟶ℕ0) |
47 | 46 | ffnd 6724 |
. . . . 5
⊢ ((𝐹 ∘f + 𝐺) ∈ 𝐷 → (𝐹 ∘f + 𝐺) Fn 𝐼) |
48 | 45, 47 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝐹 ∘f + 𝐺) Fn 𝐼) |
49 | 17 | ffnd 6724 |
. . . . . 6
⊢ (𝐺 ∈ 𝐷 → 𝐺 Fn 𝐼) |
50 | 49 | 3ad2ant2 1131 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝐺 Fn 𝐼) |
51 | | eqidd 2726 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
52 | 27, 50, 32, 32, 33, 34, 51 | ofval 7696 |
. . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → ((𝑋 ∘f + 𝐺)‘𝑥) = ((𝑋‘𝑥) + (𝐺‘𝑥))) |
53 | 29, 50, 32, 32, 33, 35, 51 | ofval 7696 |
. . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ 𝐼) → ((𝐹 ∘f + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
54 | 43, 48, 32, 32, 33, 52, 53 | ofrfval 7695 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → ((𝑋 ∘f + 𝐺) ∘r ≤ (𝐹 ∘f + 𝐺) ↔ ∀𝑥 ∈ 𝐼 ((𝑋‘𝑥) + (𝐺‘𝑥)) ≤ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
55 | 40, 54 | mpbird 256 |
. 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∘f + 𝐺) ∘r ≤ (𝐹 ∘f + 𝐺)) |
56 | | breq1 5152 |
. . 3
⊢ (𝑧 = (𝑋 ∘f + 𝐺) → (𝑧 ∘r ≤ (𝐹 ∘f + 𝐺) ↔ (𝑋 ∘f + 𝐺) ∘r ≤ (𝐹 ∘f + 𝐺))) |
57 | | psrbagleadd1.t |
. . 3
⊢ 𝑇 = {𝑧 ∈ 𝐷 ∣ 𝑧 ∘r ≤ (𝐹 ∘f + 𝐺)} |
58 | 56, 57 | elrab2 3682 |
. 2
⊢ ((𝑋 ∘f + 𝐺) ∈ 𝑇 ↔ ((𝑋 ∘f + 𝐺) ∈ 𝐷 ∧ (𝑋 ∘f + 𝐺) ∘r ≤ (𝐹 ∘f + 𝐺))) |
59 | 8, 55, 58 | sylanbrc 581 |
1
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∘f + 𝐺) ∈ 𝑇) |