MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagleadd1 Structured version   Visualization version   GIF version

Theorem psrbagleadd1 21835
Description: The analogue of "𝑋𝐹 implies 𝑋 + 𝐺𝐹 + 𝐺 " (compare leadd1d 11714) for bags. (Contributed by SN, 2-May-2025.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
psrbagleadd1.t 𝑇 = {𝑧𝐷𝑧r ≤ (𝐹f + 𝐺)}
Assertion
Ref Expression
psrbagleadd1 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∈ 𝑇)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑓,𝐺   𝑦,𝐷   𝑦,𝐹   𝑓,𝑋   𝑦,𝑋   𝑧,𝐷   𝑧,𝐹   𝑧,𝐺   𝑧,𝑋
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑧,𝑓)   𝑇(𝑦,𝑧,𝑓)   𝐺(𝑦)   𝐼(𝑦,𝑧)

Proof of Theorem psrbagleadd1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrabi 3643 . . . . 5 (𝑋 ∈ {𝑦𝐷𝑦r𝐹} → 𝑋𝐷)
2 psrbagconf1o.s . . . . 5 𝑆 = {𝑦𝐷𝑦r𝐹}
31, 2eleq2s 2846 . . . 4 (𝑋𝑆𝑋𝐷)
433ad2ant3 1135 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋𝐷)
5 simp2 1137 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐺𝐷)
6 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
76psrbagaddcl 21831 . . 3 ((𝑋𝐷𝐺𝐷) → (𝑋f + 𝐺) ∈ 𝐷)
84, 5, 7syl2anc 584 . 2 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∈ 𝐷)
96psrbagf 21825 . . . . . . . 8 (𝑋𝐷𝑋:𝐼⟶ℕ0)
104, 9syl 17 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋:𝐼⟶ℕ0)
1110ffvelcdmda 7018 . . . . . 6 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ ℕ0)
1211nn0red 12446 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ ℝ)
136psrbagf 21825 . . . . . . . 8 (𝐹𝐷𝐹:𝐼⟶ℕ0)
14133ad2ant1 1133 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐹:𝐼⟶ℕ0)
1514ffvelcdmda 7018 . . . . . 6 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
1615nn0red 12446 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
176psrbagf 21825 . . . . . . . 8 (𝐺𝐷𝐺:𝐼⟶ℕ0)
18173ad2ant2 1134 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐺:𝐼⟶ℕ0)
1918ffvelcdmda 7018 . . . . . 6 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
2019nn0red 12446 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
21 breq1 5095 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
2221, 2elrab2 3651 . . . . . . . . 9 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
2322simprbi 496 . . . . . . . 8 (𝑋𝑆𝑋r𝐹)
24233ad2ant3 1135 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋r𝐹)
259ffnd 6653 . . . . . . . . . 10 (𝑋𝐷𝑋 Fn 𝐼)
263, 25syl 17 . . . . . . . . 9 (𝑋𝑆𝑋 Fn 𝐼)
27263ad2ant3 1135 . . . . . . . 8 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋 Fn 𝐼)
2813ffnd 6653 . . . . . . . . 9 (𝐹𝐷𝐹 Fn 𝐼)
29283ad2ant1 1133 . . . . . . . 8 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐹 Fn 𝐼)
30 id 22 . . . . . . . . . 10 (𝐹𝐷𝐹𝐷)
3130, 28fndmexd 7837 . . . . . . . . 9 (𝐹𝐷𝐼 ∈ V)
32313ad2ant1 1133 . . . . . . . 8 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐼 ∈ V)
33 inidm 4178 . . . . . . . 8 (𝐼𝐼) = 𝐼
34 eqidd 2730 . . . . . . . 8 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) = (𝑋𝑥))
35 eqidd 2730 . . . . . . . 8 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3627, 29, 32, 32, 33, 34, 35ofrfval 7623 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋r𝐹 ↔ ∀𝑥𝐼 (𝑋𝑥) ≤ (𝐹𝑥)))
3724, 36mpbid 232 . . . . . 6 ((𝐹𝐷𝐺𝐷𝑋𝑆) → ∀𝑥𝐼 (𝑋𝑥) ≤ (𝐹𝑥))
3837r19.21bi 3221 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) ≤ (𝐹𝑥))
3912, 16, 20, 38leadd1dd 11734 . . . 4 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → ((𝑋𝑥) + (𝐺𝑥)) ≤ ((𝐹𝑥) + (𝐺𝑥)))
4039ralrimiva 3121 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → ∀𝑥𝐼 ((𝑋𝑥) + (𝐺𝑥)) ≤ ((𝐹𝑥) + (𝐺𝑥)))
416psrbagf 21825 . . . . . 6 ((𝑋f + 𝐺) ∈ 𝐷 → (𝑋f + 𝐺):𝐼⟶ℕ0)
4241ffnd 6653 . . . . 5 ((𝑋f + 𝐺) ∈ 𝐷 → (𝑋f + 𝐺) Fn 𝐼)
438, 42syl 17 . . . 4 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) Fn 𝐼)
446psrbagaddcl 21831 . . . . . 6 ((𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) ∈ 𝐷)
45443adant3 1132 . . . . 5 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝐹f + 𝐺) ∈ 𝐷)
466psrbagf 21825 . . . . . 6 ((𝐹f + 𝐺) ∈ 𝐷 → (𝐹f + 𝐺):𝐼⟶ℕ0)
4746ffnd 6653 . . . . 5 ((𝐹f + 𝐺) ∈ 𝐷 → (𝐹f + 𝐺) Fn 𝐼)
4845, 47syl 17 . . . 4 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝐹f + 𝐺) Fn 𝐼)
4917ffnd 6653 . . . . . 6 (𝐺𝐷𝐺 Fn 𝐼)
50493ad2ant2 1134 . . . . 5 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐺 Fn 𝐼)
51 eqidd 2730 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
5227, 50, 32, 32, 33, 34, 51ofval 7624 . . . 4 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → ((𝑋f + 𝐺)‘𝑥) = ((𝑋𝑥) + (𝐺𝑥)))
5329, 50, 32, 32, 33, 35, 51ofval 7624 . . . 4 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
5443, 48, 32, 32, 33, 52, 53ofrfval 7623 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → ((𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺) ↔ ∀𝑥𝐼 ((𝑋𝑥) + (𝐺𝑥)) ≤ ((𝐹𝑥) + (𝐺𝑥))))
5540, 54mpbird 257 . 2 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺))
56 breq1 5095 . . 3 (𝑧 = (𝑋f + 𝐺) → (𝑧r ≤ (𝐹f + 𝐺) ↔ (𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺)))
57 psrbagleadd1.t . . 3 𝑇 = {𝑧𝐷𝑧r ≤ (𝐹f + 𝐺)}
5856, 57elrab2 3651 . 2 ((𝑋f + 𝐺) ∈ 𝑇 ↔ ((𝑋f + 𝐺) ∈ 𝐷 ∧ (𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺)))
598, 55, 58sylanbrc 583 1 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436   class class class wbr 5092  ccnv 5618  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  r cofr 7612  m cmap 8753  Fincfn 8872   + caddc 11012  cle 11150  cn 12128  0cn0 12384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-nn 12129  df-n0 12385
This theorem is referenced by:  psdmul  22051
  Copyright terms: Public domain W3C validator