MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagleadd1 Structured version   Visualization version   GIF version

Theorem psrbagleadd1 21886
Description: The analogue of "𝑋𝐹 implies 𝑋 + 𝐺𝐹 + 𝐺 " (compare leadd1d 11840) for bags. (Contributed by SN, 2-May-2025.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
psrbagleadd1.t 𝑇 = {𝑧𝐷𝑧r ≤ (𝐹f + 𝐺)}
Assertion
Ref Expression
psrbagleadd1 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∈ 𝑇)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑓,𝐺   𝑦,𝐷   𝑦,𝐹   𝑓,𝑋   𝑦,𝑋   𝑧,𝐷   𝑧,𝐹   𝑧,𝐺   𝑧,𝑋
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑧,𝑓)   𝑇(𝑦,𝑧,𝑓)   𝐺(𝑦)   𝐼(𝑦,𝑧)

Proof of Theorem psrbagleadd1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrabi 3673 . . . . 5 (𝑋 ∈ {𝑦𝐷𝑦r𝐹} → 𝑋𝐷)
2 psrbagconf1o.s . . . . 5 𝑆 = {𝑦𝐷𝑦r𝐹}
31, 2eleq2s 2843 . . . 4 (𝑋𝑆𝑋𝐷)
433ad2ant3 1132 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋𝐷)
5 simp2 1134 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐺𝐷)
6 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
76psrbagaddcl 21878 . . 3 ((𝑋𝐷𝐺𝐷) → (𝑋f + 𝐺) ∈ 𝐷)
84, 5, 7syl2anc 582 . 2 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∈ 𝐷)
96psrbagf 21868 . . . . . . . 8 (𝑋𝐷𝑋:𝐼⟶ℕ0)
104, 9syl 17 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋:𝐼⟶ℕ0)
1110ffvelcdmda 7093 . . . . . 6 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ ℕ0)
1211nn0red 12566 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ ℝ)
136psrbagf 21868 . . . . . . . 8 (𝐹𝐷𝐹:𝐼⟶ℕ0)
14133ad2ant1 1130 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐹:𝐼⟶ℕ0)
1514ffvelcdmda 7093 . . . . . 6 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
1615nn0red 12566 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
176psrbagf 21868 . . . . . . . 8 (𝐺𝐷𝐺:𝐼⟶ℕ0)
18173ad2ant2 1131 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐺:𝐼⟶ℕ0)
1918ffvelcdmda 7093 . . . . . 6 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
2019nn0red 12566 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
21 breq1 5152 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
2221, 2elrab2 3682 . . . . . . . . 9 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
2322simprbi 495 . . . . . . . 8 (𝑋𝑆𝑋r𝐹)
24233ad2ant3 1132 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋r𝐹)
259ffnd 6724 . . . . . . . . . 10 (𝑋𝐷𝑋 Fn 𝐼)
263, 25syl 17 . . . . . . . . 9 (𝑋𝑆𝑋 Fn 𝐼)
27263ad2ant3 1132 . . . . . . . 8 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝑋 Fn 𝐼)
2813ffnd 6724 . . . . . . . . 9 (𝐹𝐷𝐹 Fn 𝐼)
29283ad2ant1 1130 . . . . . . . 8 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐹 Fn 𝐼)
30 id 22 . . . . . . . . . 10 (𝐹𝐷𝐹𝐷)
3130, 28fndmexd 7912 . . . . . . . . 9 (𝐹𝐷𝐼 ∈ V)
32313ad2ant1 1130 . . . . . . . 8 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐼 ∈ V)
33 inidm 4217 . . . . . . . 8 (𝐼𝐼) = 𝐼
34 eqidd 2726 . . . . . . . 8 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) = (𝑋𝑥))
35 eqidd 2726 . . . . . . . 8 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3627, 29, 32, 32, 33, 34, 35ofrfval 7695 . . . . . . 7 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋r𝐹 ↔ ∀𝑥𝐼 (𝑋𝑥) ≤ (𝐹𝑥)))
3724, 36mpbid 231 . . . . . 6 ((𝐹𝐷𝐺𝐷𝑋𝑆) → ∀𝑥𝐼 (𝑋𝑥) ≤ (𝐹𝑥))
3837r19.21bi 3238 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝑋𝑥) ≤ (𝐹𝑥))
3912, 16, 20, 38leadd1dd 11860 . . . 4 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → ((𝑋𝑥) + (𝐺𝑥)) ≤ ((𝐹𝑥) + (𝐺𝑥)))
4039ralrimiva 3135 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → ∀𝑥𝐼 ((𝑋𝑥) + (𝐺𝑥)) ≤ ((𝐹𝑥) + (𝐺𝑥)))
416psrbagf 21868 . . . . . 6 ((𝑋f + 𝐺) ∈ 𝐷 → (𝑋f + 𝐺):𝐼⟶ℕ0)
4241ffnd 6724 . . . . 5 ((𝑋f + 𝐺) ∈ 𝐷 → (𝑋f + 𝐺) Fn 𝐼)
438, 42syl 17 . . . 4 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) Fn 𝐼)
446psrbagaddcl 21878 . . . . . 6 ((𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) ∈ 𝐷)
45443adant3 1129 . . . . 5 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝐹f + 𝐺) ∈ 𝐷)
466psrbagf 21868 . . . . . 6 ((𝐹f + 𝐺) ∈ 𝐷 → (𝐹f + 𝐺):𝐼⟶ℕ0)
4746ffnd 6724 . . . . 5 ((𝐹f + 𝐺) ∈ 𝐷 → (𝐹f + 𝐺) Fn 𝐼)
4845, 47syl 17 . . . 4 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝐹f + 𝐺) Fn 𝐼)
4917ffnd 6724 . . . . . 6 (𝐺𝐷𝐺 Fn 𝐼)
50493ad2ant2 1131 . . . . 5 ((𝐹𝐷𝐺𝐷𝑋𝑆) → 𝐺 Fn 𝐼)
51 eqidd 2726 . . . . 5 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
5227, 50, 32, 32, 33, 34, 51ofval 7696 . . . 4 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → ((𝑋f + 𝐺)‘𝑥) = ((𝑋𝑥) + (𝐺𝑥)))
5329, 50, 32, 32, 33, 35, 51ofval 7696 . . . 4 (((𝐹𝐷𝐺𝐷𝑋𝑆) ∧ 𝑥𝐼) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
5443, 48, 32, 32, 33, 52, 53ofrfval 7695 . . 3 ((𝐹𝐷𝐺𝐷𝑋𝑆) → ((𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺) ↔ ∀𝑥𝐼 ((𝑋𝑥) + (𝐺𝑥)) ≤ ((𝐹𝑥) + (𝐺𝑥))))
5540, 54mpbird 256 . 2 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺))
56 breq1 5152 . . 3 (𝑧 = (𝑋f + 𝐺) → (𝑧r ≤ (𝐹f + 𝐺) ↔ (𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺)))
57 psrbagleadd1.t . . 3 𝑇 = {𝑧𝐷𝑧r ≤ (𝐹f + 𝐺)}
5856, 57elrab2 3682 . 2 ((𝑋f + 𝐺) ∈ 𝑇 ↔ ((𝑋f + 𝐺) ∈ 𝐷 ∧ (𝑋f + 𝐺) ∘r ≤ (𝐹f + 𝐺)))
598, 55, 58sylanbrc 581 1 ((𝐹𝐷𝐺𝐷𝑋𝑆) → (𝑋f + 𝐺) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  {crab 3418  Vcvv 3461   class class class wbr 5149  ccnv 5677  cima 5681   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  r cofr 7684  m cmap 8845  Fincfn 8964   + caddc 11143  cle 11281  cn 12245  0cn0 12505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-nn 12246  df-n0 12506
This theorem is referenced by:  psdmul  22113
  Copyright terms: Public domain W3C validator