MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramsey Structured version   Visualization version   GIF version

Theorem ramsey 16959
Description: Ramsey's theorem with the definition of Ramsey (df-ram 16930) eliminated. If 𝑀 is an integer, 𝑅 is a specified finite set of colors, and 𝐹:π‘…βŸΆβ„•0 is a set of lower bounds for each color, then there is an 𝑛 such that for every set 𝑠 of size greater than 𝑛 and every coloring 𝑓 of the set (𝑠𝐢𝑀) of all 𝑀-element subsets of 𝑠, there is a color 𝑐 and a subset π‘₯ βŠ† 𝑠 such that π‘₯ is larger than 𝐹(𝑐) and the 𝑀 -element subsets of π‘₯ are monochromatic with color 𝑐. This is the hypergraph version of Ramsey's theorem; the version for simple graphs is the case 𝑀 = 2. This is Metamath 100 proof #31. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ramsey.c 𝐢 = (π‘Ž ∈ V, 𝑖 ∈ β„•0 ↦ {𝑏 ∈ 𝒫 π‘Ž ∣ (β™―β€˜π‘) = 𝑖})
Assertion
Ref Expression
ramsey ((𝑀 ∈ β„•0 ∧ 𝑅 ∈ Fin ∧ 𝐹:π‘…βŸΆβ„•0) β†’ βˆƒπ‘› ∈ β„•0 βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐}))))
Distinct variable groups:   𝑓,𝑐,𝑛,𝑠,π‘₯,𝐹   π‘Ž,𝑏,𝑐,𝑓,𝑖,𝑛,𝑠,π‘₯,𝑀   𝑅,𝑐,𝑓,𝑛,𝑠,π‘₯   𝐢,𝑐,𝑓,π‘₯
Allowed substitution hints:   𝐢(𝑖,𝑛,𝑠,π‘Ž,𝑏)   𝑅(𝑖,π‘Ž,𝑏)   𝐹(𝑖,π‘Ž,𝑏)

Proof of Theorem ramsey
StepHypRef Expression
1 ramcl 16958 . . 3 ((𝑀 ∈ β„•0 ∧ 𝑅 ∈ Fin ∧ 𝐹:π‘…βŸΆβ„•0) β†’ (𝑀 Ramsey 𝐹) ∈ β„•0)
2 ramsey.c . . . 4 𝐢 = (π‘Ž ∈ V, 𝑖 ∈ β„•0 ↦ {𝑏 ∈ 𝒫 π‘Ž ∣ (β™―β€˜π‘) = 𝑖})
3 eqid 2732 . . . 4 {𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))} = {𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))}
42, 3ramtcl2 16940 . . 3 ((𝑀 ∈ β„•0 ∧ 𝑅 ∈ Fin ∧ 𝐹:π‘…βŸΆβ„•0) β†’ ((𝑀 Ramsey 𝐹) ∈ β„•0 ↔ {𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))} β‰  βˆ…))
51, 4mpbid 231 . 2 ((𝑀 ∈ β„•0 ∧ 𝑅 ∈ Fin ∧ 𝐹:π‘…βŸΆβ„•0) β†’ {𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))} β‰  βˆ…)
6 rabn0 4384 . 2 ({𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))} β‰  βˆ… ↔ βˆƒπ‘› ∈ β„•0 βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐}))))
75, 6sylib 217 1 ((𝑀 ∈ β„•0 ∧ 𝑅 ∈ Fin ∧ 𝐹:π‘…βŸΆβ„•0) β†’ βˆƒπ‘› ∈ β„•0 βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  {csn 4627   class class class wbr 5147  β—‘ccnv 5674   β€œ cima 5678  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407   ↑m cmap 8816  Fincfn 8935   ≀ cle 11245  β„•0cn0 12468  β™―chash 14286   Ramsey cram 16928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-ram 16930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator