![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmply1 | Structured version Visualization version GIF version |
Description: Provide a ring homomorphism between two univariate polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 20-May-2025.) |
Ref | Expression |
---|---|
rhmply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
rhmply1.q | ⊢ 𝑄 = (Poly1‘𝑆) |
rhmply1.b | ⊢ 𝐵 = (Base‘𝑃) |
rhmply1.f | ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) |
rhmply1.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
Ref | Expression |
---|---|
rhmply1 | ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | eqid 2725 | . . 3 ⊢ (1o mPoly 𝑆) = (1o mPoly 𝑆) | |
3 | rhmply1.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | rhmply1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | 3, 4 | ply1bas 22137 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
6 | rhmply1.f | . . 3 ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) | |
7 | 1oex 8497 | . . . 4 ⊢ 1o ∈ V | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ V) |
9 | rhmply1.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) | |
10 | 1, 2, 5, 6, 8, 9 | rhmmpl 22327 | . 2 ⊢ (𝜑 → 𝐹 ∈ ((1o mPoly 𝑅) RingHom (1o mPoly 𝑆))) |
11 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
12 | eqid 2725 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → (Base‘𝑄) = (Base‘𝑄)) |
14 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(1o mPoly 𝑅))) |
15 | rhmply1.q | . . . . 5 ⊢ 𝑄 = (Poly1‘𝑆) | |
16 | 15, 12 | ply1bas 22137 | . . . 4 ⊢ (Base‘𝑄) = (Base‘(1o mPoly 𝑆)) |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (Base‘𝑄) = (Base‘(1o mPoly 𝑆))) |
18 | eqid 2725 | . . . . . 6 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
19 | 3, 1, 18 | ply1plusg 22166 | . . . . 5 ⊢ (+g‘𝑃) = (+g‘(1o mPoly 𝑅)) |
20 | 19 | oveqi 7432 | . . . 4 ⊢ (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘(1o mPoly 𝑅))𝑦) |
21 | 20 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘(1o mPoly 𝑅))𝑦)) |
22 | eqid 2725 | . . . . . 6 ⊢ (+g‘𝑄) = (+g‘𝑄) | |
23 | 15, 2, 22 | ply1plusg 22166 | . . . . 5 ⊢ (+g‘𝑄) = (+g‘(1o mPoly 𝑆)) |
24 | 23 | oveqi 7432 | . . . 4 ⊢ (𝑥(+g‘𝑄)𝑦) = (𝑥(+g‘(1o mPoly 𝑆))𝑦) |
25 | 24 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(+g‘𝑄)𝑦) = (𝑥(+g‘(1o mPoly 𝑆))𝑦)) |
26 | eqid 2725 | . . . . . 6 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
27 | 3, 1, 26 | ply1mulr 22168 | . . . . 5 ⊢ (.r‘𝑃) = (.r‘(1o mPoly 𝑅)) |
28 | 27 | oveqi 7432 | . . . 4 ⊢ (𝑥(.r‘𝑃)𝑦) = (𝑥(.r‘(1o mPoly 𝑅))𝑦) |
29 | 28 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑃)𝑦) = (𝑥(.r‘(1o mPoly 𝑅))𝑦)) |
30 | eqid 2725 | . . . . . 6 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
31 | 15, 2, 30 | ply1mulr 22168 | . . . . 5 ⊢ (.r‘𝑄) = (.r‘(1o mPoly 𝑆)) |
32 | 31 | oveqi 7432 | . . . 4 ⊢ (𝑥(.r‘𝑄)𝑦) = (𝑥(.r‘(1o mPoly 𝑆))𝑦) |
33 | 32 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(.r‘𝑄)𝑦) = (𝑥(.r‘(1o mPoly 𝑆))𝑦)) |
34 | 11, 13, 14, 17, 21, 25, 29, 33 | rhmpropd 20560 | . 2 ⊢ (𝜑 → (𝑃 RingHom 𝑄) = ((1o mPoly 𝑅) RingHom (1o mPoly 𝑆))) |
35 | 10, 34 | eleqtrrd 2828 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ↦ cmpt 5232 ∘ ccom 5682 ‘cfv 6549 (class class class)co 7419 1oc1o 8480 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 RingHom crh 20420 mPoly cmpl 21856 Poly1cpl1 22119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-fzo 13663 df-seq 14003 df-hash 14326 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-mulg 19032 df-subg 19086 df-ghm 19176 df-cntz 19280 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-rhm 20423 df-subrng 20495 df-subrg 20520 df-psr 21859 df-mpl 21861 df-opsr 21863 df-psr1 22122 df-ply1 22124 |
This theorem is referenced by: rhmply1mon 22333 aks5lem1 41789 aks5lem2 41790 |
Copyright terms: Public domain | W3C validator |