MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmply1 Structured version   Visualization version   GIF version

Theorem rhmply1 22280
Description: Provide a ring homomorphism between two univariate polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 20-May-2025.)
Hypotheses
Ref Expression
rhmply1.p 𝑃 = (Poly1𝑅)
rhmply1.q 𝑄 = (Poly1𝑆)
rhmply1.b 𝐵 = (Base‘𝑃)
rhmply1.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmply1.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmply1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Distinct variable groups:   𝐵,𝑝   𝐻,𝑝   𝑅,𝑝   𝑆,𝑝   𝜑,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑄(𝑝)   𝐹(𝑝)

Proof of Theorem rhmply1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 eqid 2730 . . 3 (1o mPoly 𝑆) = (1o mPoly 𝑆)
3 rhmply1.p . . . 4 𝑃 = (Poly1𝑅)
4 rhmply1.b . . . 4 𝐵 = (Base‘𝑃)
53, 4ply1bas 22086 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
6 rhmply1.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
7 1oex 8447 . . . 4 1o ∈ V
87a1i 11 . . 3 (𝜑 → 1o ∈ V)
9 rhmply1.h . . 3 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
101, 2, 5, 6, 8, 9rhmmpl 22277 . 2 (𝜑𝐹 ∈ ((1o mPoly 𝑅) RingHom (1o mPoly 𝑆)))
114a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑃))
12 eqid 2730 . . . 4 (Base‘𝑄) = (Base‘𝑄)
1312a1i 11 . . 3 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
145a1i 11 . . 3 (𝜑𝐵 = (Base‘(1o mPoly 𝑅)))
15 rhmply1.q . . . . 5 𝑄 = (Poly1𝑆)
1615, 12ply1bas 22086 . . . 4 (Base‘𝑄) = (Base‘(1o mPoly 𝑆))
1716a1i 11 . . 3 (𝜑 → (Base‘𝑄) = (Base‘(1o mPoly 𝑆)))
18 eqid 2730 . . . . . 6 (+g𝑃) = (+g𝑃)
193, 1, 18ply1plusg 22115 . . . . 5 (+g𝑃) = (+g‘(1o mPoly 𝑅))
2019oveqi 7403 . . . 4 (𝑥(+g𝑃)𝑦) = (𝑥(+g‘(1o mPoly 𝑅))𝑦)
2120a1i 11 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) = (𝑥(+g‘(1o mPoly 𝑅))𝑦))
22 eqid 2730 . . . . . 6 (+g𝑄) = (+g𝑄)
2315, 2, 22ply1plusg 22115 . . . . 5 (+g𝑄) = (+g‘(1o mPoly 𝑆))
2423oveqi 7403 . . . 4 (𝑥(+g𝑄)𝑦) = (𝑥(+g‘(1o mPoly 𝑆))𝑦)
2524a1i 11 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(+g𝑄)𝑦) = (𝑥(+g‘(1o mPoly 𝑆))𝑦))
26 eqid 2730 . . . . . 6 (.r𝑃) = (.r𝑃)
273, 1, 26ply1mulr 22117 . . . . 5 (.r𝑃) = (.r‘(1o mPoly 𝑅))
2827oveqi 7403 . . . 4 (𝑥(.r𝑃)𝑦) = (𝑥(.r‘(1o mPoly 𝑅))𝑦)
2928a1i 11 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) = (𝑥(.r‘(1o mPoly 𝑅))𝑦))
30 eqid 2730 . . . . . 6 (.r𝑄) = (.r𝑄)
3115, 2, 30ply1mulr 22117 . . . . 5 (.r𝑄) = (.r‘(1o mPoly 𝑆))
3231oveqi 7403 . . . 4 (𝑥(.r𝑄)𝑦) = (𝑥(.r‘(1o mPoly 𝑆))𝑦)
3332a1i 11 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(.r𝑄)𝑦) = (𝑥(.r‘(1o mPoly 𝑆))𝑦))
3411, 13, 14, 17, 21, 25, 29, 33rhmpropd 20525 . 2 (𝜑 → (𝑃 RingHom 𝑄) = ((1o mPoly 𝑅) RingHom (1o mPoly 𝑆)))
3510, 34eleqtrrd 2832 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  ccom 5645  cfv 6514  (class class class)co 7390  1oc1o 8430  Basecbs 17186  +gcplusg 17227  .rcmulr 17228   RingHom crh 20385   mPoly cmpl 21822  Poly1cpl1 22068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-psr 21825  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-ply1 22073
This theorem is referenced by:  rhmply1mon  22283  aks5lem1  42181  aks5lem2  42182  aks5lem3a  42184
  Copyright terms: Public domain W3C validator