| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmply1 | Structured version Visualization version GIF version | ||
| Description: Provide a ring homomorphism between two univariate polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 20-May-2025.) |
| Ref | Expression |
|---|---|
| rhmply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| rhmply1.q | ⊢ 𝑄 = (Poly1‘𝑆) |
| rhmply1.b | ⊢ 𝐵 = (Base‘𝑃) |
| rhmply1.f | ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) |
| rhmply1.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
| Ref | Expression |
|---|---|
| rhmply1 | ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (1o mPoly 𝑆) = (1o mPoly 𝑆) | |
| 3 | rhmply1.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | rhmply1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | 3, 4 | ply1bas 22113 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
| 6 | rhmply1.f | . . 3 ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) | |
| 7 | 1oex 8401 | . . . 4 ⊢ 1o ∈ V | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ V) |
| 9 | rhmply1.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) | |
| 10 | 1, 2, 5, 6, 8, 9 | rhmmpl 22304 | . 2 ⊢ (𝜑 → 𝐹 ∈ ((1o mPoly 𝑅) RingHom (1o mPoly 𝑆))) |
| 11 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 12 | eqid 2731 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → (Base‘𝑄) = (Base‘𝑄)) |
| 14 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(1o mPoly 𝑅))) |
| 15 | rhmply1.q | . . . . 5 ⊢ 𝑄 = (Poly1‘𝑆) | |
| 16 | 15, 12 | ply1bas 22113 | . . . 4 ⊢ (Base‘𝑄) = (Base‘(1o mPoly 𝑆)) |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (Base‘𝑄) = (Base‘(1o mPoly 𝑆))) |
| 18 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 19 | 3, 1, 18 | ply1plusg 22142 | . . . . 5 ⊢ (+g‘𝑃) = (+g‘(1o mPoly 𝑅)) |
| 20 | 19 | oveqi 7365 | . . . 4 ⊢ (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘(1o mPoly 𝑅))𝑦) |
| 21 | 20 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘(1o mPoly 𝑅))𝑦)) |
| 22 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑄) = (+g‘𝑄) | |
| 23 | 15, 2, 22 | ply1plusg 22142 | . . . . 5 ⊢ (+g‘𝑄) = (+g‘(1o mPoly 𝑆)) |
| 24 | 23 | oveqi 7365 | . . . 4 ⊢ (𝑥(+g‘𝑄)𝑦) = (𝑥(+g‘(1o mPoly 𝑆))𝑦) |
| 25 | 24 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(+g‘𝑄)𝑦) = (𝑥(+g‘(1o mPoly 𝑆))𝑦)) |
| 26 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 27 | 3, 1, 26 | ply1mulr 22144 | . . . . 5 ⊢ (.r‘𝑃) = (.r‘(1o mPoly 𝑅)) |
| 28 | 27 | oveqi 7365 | . . . 4 ⊢ (𝑥(.r‘𝑃)𝑦) = (𝑥(.r‘(1o mPoly 𝑅))𝑦) |
| 29 | 28 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑃)𝑦) = (𝑥(.r‘(1o mPoly 𝑅))𝑦)) |
| 30 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
| 31 | 15, 2, 30 | ply1mulr 22144 | . . . . 5 ⊢ (.r‘𝑄) = (.r‘(1o mPoly 𝑆)) |
| 32 | 31 | oveqi 7365 | . . . 4 ⊢ (𝑥(.r‘𝑄)𝑦) = (𝑥(.r‘(1o mPoly 𝑆))𝑦) |
| 33 | 32 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(.r‘𝑄)𝑦) = (𝑥(.r‘(1o mPoly 𝑆))𝑦)) |
| 34 | 11, 13, 14, 17, 21, 25, 29, 33 | rhmpropd 20530 | . 2 ⊢ (𝜑 → (𝑃 RingHom 𝑄) = ((1o mPoly 𝑅) RingHom (1o mPoly 𝑆))) |
| 35 | 10, 34 | eleqtrrd 2834 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5174 ∘ ccom 5623 ‘cfv 6487 (class class class)co 7352 1oc1o 8384 Basecbs 17126 +gcplusg 17167 .rcmulr 17168 RingHom crh 20393 mPoly cmpl 21849 Poly1cpl1 22095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-hom 17191 df-cco 17192 df-0g 17351 df-gsum 17352 df-prds 17357 df-pws 17359 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-grp 18855 df-minusg 18856 df-mulg 18987 df-subg 19042 df-ghm 19131 df-cntz 19235 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-rhm 20396 df-subrng 20467 df-subrg 20491 df-psr 21852 df-mpl 21854 df-opsr 21856 df-psr1 22098 df-ply1 22100 |
| This theorem is referenced by: rhmply1mon 22310 aks5lem1 42285 aks5lem2 42286 aks5lem3a 42288 |
| Copyright terms: Public domain | W3C validator |