Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpsr1 Structured version   Visualization version   GIF version

Theorem rhmpsr1 42240
Description: Provide a ring homomorphism between two univariate power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmpsr1.p 𝑃 = (PwSer1𝑅)
rhmpsr1.q 𝑄 = (PwSer1𝑆)
rhmpsr1.b 𝐵 = (Base‘𝑃)
rhmpsr1.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmpsr1.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmpsr1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Distinct variable groups:   𝐵,𝑝   𝐻,𝑝   𝑅,𝑝   𝑆,𝑝   𝜑,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑄(𝑝)   𝐹(𝑝)

Proof of Theorem rhmpsr1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
2 eqid 2726 . . 3 (1o mPwSer 𝑆) = (1o mPwSer 𝑆)
3 rhmpsr1.p . . . 4 𝑃 = (PwSer1𝑅)
4 rhmpsr1.b . . . 4 𝐵 = (Base‘𝑃)
53, 4, 1psr1bas2 22172 . . 3 𝐵 = (Base‘(1o mPwSer 𝑅))
6 rhmpsr1.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
7 1oex 8495 . . . 4 1o ∈ V
87a1i 11 . . 3 (𝜑 → 1o ∈ V)
9 rhmpsr1.h . . 3 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
101, 2, 5, 6, 8, 9rhmpsr 42239 . 2 (𝜑𝐹 ∈ ((1o mPwSer 𝑅) RingHom (1o mPwSer 𝑆)))
11 eqid 2726 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
123, 11, 1psr1bas2 22172 . . . 4 (Base‘𝑃) = (Base‘(1o mPwSer 𝑅))
1312a1i 11 . . 3 (𝜑 → (Base‘𝑃) = (Base‘(1o mPwSer 𝑅)))
14 rhmpsr1.q . . . . 5 𝑄 = (PwSer1𝑆)
15 eqid 2726 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
1614, 15, 2psr1bas2 22172 . . . 4 (Base‘𝑄) = (Base‘(1o mPwSer 𝑆))
1716a1i 11 . . 3 (𝜑 → (Base‘𝑄) = (Base‘(1o mPwSer 𝑆)))
18 eqidd 2727 . . 3 (𝜑 → (Base‘𝑃) = (Base‘𝑃))
19 eqidd 2727 . . 3 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
20 eqid 2726 . . . . . . 7 (+g𝑃) = (+g𝑃)
213, 1, 20psr1plusg 22203 . . . . . 6 (+g𝑃) = (+g‘(1o mPwSer 𝑅))
2221eqcomi 2735 . . . . 5 (+g‘(1o mPwSer 𝑅)) = (+g𝑃)
2322a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (+g‘(1o mPwSer 𝑅)) = (+g𝑃))
2423oveqd 7430 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(+g‘(1o mPwSer 𝑅))𝑦) = (𝑥(+g𝑃)𝑦))
25 eqid 2726 . . . . . . 7 (+g𝑄) = (+g𝑄)
2614, 2, 25psr1plusg 22203 . . . . . 6 (+g𝑄) = (+g‘(1o mPwSer 𝑆))
2726eqcomi 2735 . . . . 5 (+g‘(1o mPwSer 𝑆)) = (+g𝑄)
2827a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (+g‘(1o mPwSer 𝑆)) = (+g𝑄))
2928oveqd 7430 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(+g‘(1o mPwSer 𝑆))𝑦) = (𝑥(+g𝑄)𝑦))
30 eqid 2726 . . . . . . 7 (.r𝑃) = (.r𝑃)
313, 1, 30psr1mulr 22205 . . . . . 6 (.r𝑃) = (.r‘(1o mPwSer 𝑅))
3231eqcomi 2735 . . . . 5 (.r‘(1o mPwSer 𝑅)) = (.r𝑃)
3332a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (.r‘(1o mPwSer 𝑅)) = (.r𝑃))
3433oveqd 7430 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘(1o mPwSer 𝑅))𝑦) = (𝑥(.r𝑃)𝑦))
35 eqid 2726 . . . . . . 7 (.r𝑄) = (.r𝑄)
3614, 2, 35psr1mulr 22205 . . . . . 6 (.r𝑄) = (.r‘(1o mPwSer 𝑆))
3736eqcomi 2735 . . . . 5 (.r‘(1o mPwSer 𝑆)) = (.r𝑄)
3837a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (.r‘(1o mPwSer 𝑆)) = (.r𝑄))
3938oveqd 7430 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(.r‘(1o mPwSer 𝑆))𝑦) = (𝑥(.r𝑄)𝑦))
4013, 17, 18, 19, 24, 29, 34, 39rhmpropd 20586 . 2 (𝜑 → ((1o mPwSer 𝑅) RingHom (1o mPwSer 𝑆)) = (𝑃 RingHom 𝑄))
4110, 40eleqtrd 2828 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cmpt 5226  ccom 5676  cfv 6543  (class class class)co 7413  1oc1o 8478  Basecbs 17205  +gcplusg 17258  .rcmulr 17259   RingHom crh 20444   mPwSer cmps 21894  PwSer1cps1 22157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7866  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8846  df-pm 8847  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9396  df-sup 9475  df-oi 9543  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-3 12319  df-4 12320  df-5 12321  df-6 12322  df-7 12323  df-8 12324  df-9 12325  df-n0 12516  df-z 12602  df-dec 12721  df-uz 12866  df-fz 13530  df-fzo 13673  df-seq 14013  df-hash 14340  df-struct 17141  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-ress 17235  df-plusg 17271  df-mulr 17272  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-hom 17282  df-cco 17283  df-0g 17448  df-gsum 17449  df-prds 17454  df-pws 17456  df-mre 17591  df-mrc 17592  df-acs 17594  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-mulg 19055  df-ghm 19200  df-cntz 19304  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20129  df-ur 20158  df-ring 20211  df-rhm 20447  df-psr 21899  df-opsr 21903  df-psr1 22162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator