Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpsr1 Structured version   Visualization version   GIF version

Theorem rhmpsr1 42508
Description: Provide a ring homomorphism between two univariate power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmpsr1.p 𝑃 = (PwSer1𝑅)
rhmpsr1.q 𝑄 = (PwSer1𝑆)
rhmpsr1.b 𝐵 = (Base‘𝑃)
rhmpsr1.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmpsr1.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmpsr1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Distinct variable groups:   𝐵,𝑝   𝐻,𝑝   𝑅,𝑝   𝑆,𝑝   𝜑,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑄(𝑝)   𝐹(𝑝)

Proof of Theorem rhmpsr1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
2 eqid 2740 . . 3 (1o mPwSer 𝑆) = (1o mPwSer 𝑆)
3 rhmpsr1.p . . . 4 𝑃 = (PwSer1𝑅)
4 rhmpsr1.b . . . 4 𝐵 = (Base‘𝑃)
53, 4, 1psr1bas2 22212 . . 3 𝐵 = (Base‘(1o mPwSer 𝑅))
6 rhmpsr1.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
7 1oex 8532 . . . 4 1o ∈ V
87a1i 11 . . 3 (𝜑 → 1o ∈ V)
9 rhmpsr1.h . . 3 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
101, 2, 5, 6, 8, 9rhmpsr 42507 . 2 (𝜑𝐹 ∈ ((1o mPwSer 𝑅) RingHom (1o mPwSer 𝑆)))
11 eqid 2740 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
123, 11, 1psr1bas2 22212 . . . 4 (Base‘𝑃) = (Base‘(1o mPwSer 𝑅))
1312a1i 11 . . 3 (𝜑 → (Base‘𝑃) = (Base‘(1o mPwSer 𝑅)))
14 rhmpsr1.q . . . . 5 𝑄 = (PwSer1𝑆)
15 eqid 2740 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
1614, 15, 2psr1bas2 22212 . . . 4 (Base‘𝑄) = (Base‘(1o mPwSer 𝑆))
1716a1i 11 . . 3 (𝜑 → (Base‘𝑄) = (Base‘(1o mPwSer 𝑆)))
18 eqidd 2741 . . 3 (𝜑 → (Base‘𝑃) = (Base‘𝑃))
19 eqidd 2741 . . 3 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
20 eqid 2740 . . . . . . 7 (+g𝑃) = (+g𝑃)
213, 1, 20psr1plusg 22243 . . . . . 6 (+g𝑃) = (+g‘(1o mPwSer 𝑅))
2221eqcomi 2749 . . . . 5 (+g‘(1o mPwSer 𝑅)) = (+g𝑃)
2322a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (+g‘(1o mPwSer 𝑅)) = (+g𝑃))
2423oveqd 7465 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(+g‘(1o mPwSer 𝑅))𝑦) = (𝑥(+g𝑃)𝑦))
25 eqid 2740 . . . . . . 7 (+g𝑄) = (+g𝑄)
2614, 2, 25psr1plusg 22243 . . . . . 6 (+g𝑄) = (+g‘(1o mPwSer 𝑆))
2726eqcomi 2749 . . . . 5 (+g‘(1o mPwSer 𝑆)) = (+g𝑄)
2827a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (+g‘(1o mPwSer 𝑆)) = (+g𝑄))
2928oveqd 7465 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(+g‘(1o mPwSer 𝑆))𝑦) = (𝑥(+g𝑄)𝑦))
30 eqid 2740 . . . . . . 7 (.r𝑃) = (.r𝑃)
313, 1, 30psr1mulr 22245 . . . . . 6 (.r𝑃) = (.r‘(1o mPwSer 𝑅))
3231eqcomi 2749 . . . . 5 (.r‘(1o mPwSer 𝑅)) = (.r𝑃)
3332a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (.r‘(1o mPwSer 𝑅)) = (.r𝑃))
3433oveqd 7465 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘(1o mPwSer 𝑅))𝑦) = (𝑥(.r𝑃)𝑦))
35 eqid 2740 . . . . . . 7 (.r𝑄) = (.r𝑄)
3614, 2, 35psr1mulr 22245 . . . . . 6 (.r𝑄) = (.r‘(1o mPwSer 𝑆))
3736eqcomi 2749 . . . . 5 (.r‘(1o mPwSer 𝑆)) = (.r𝑄)
3837a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (.r‘(1o mPwSer 𝑆)) = (.r𝑄))
3938oveqd 7465 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(.r‘(1o mPwSer 𝑆))𝑦) = (𝑥(.r𝑄)𝑦))
4013, 17, 18, 19, 24, 29, 34, 39rhmpropd 20637 . 2 (𝜑 → ((1o mPwSer 𝑅) RingHom (1o mPwSer 𝑆)) = (𝑃 RingHom 𝑄))
4110, 40eleqtrd 2846 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  ccom 5704  cfv 6573  (class class class)co 7448  1oc1o 8515  Basecbs 17258  +gcplusg 17311  .rcmulr 17312   RingHom crh 20495   mPwSer cmps 21947  PwSer1cps1 22197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-rhm 20498  df-psr 21952  df-opsr 21956  df-psr1 22202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator