![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmpsr1 | Structured version Visualization version GIF version |
Description: Provide a ring homomorphism between two univariate power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.) |
Ref | Expression |
---|---|
rhmpsr1.p | ⊢ 𝑃 = (PwSer1‘𝑅) |
rhmpsr1.q | ⊢ 𝑄 = (PwSer1‘𝑆) |
rhmpsr1.b | ⊢ 𝐵 = (Base‘𝑃) |
rhmpsr1.f | ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) |
rhmpsr1.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
Ref | Expression |
---|---|
rhmpsr1 | ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
2 | eqid 2726 | . . 3 ⊢ (1o mPwSer 𝑆) = (1o mPwSer 𝑆) | |
3 | rhmpsr1.p | . . . 4 ⊢ 𝑃 = (PwSer1‘𝑅) | |
4 | rhmpsr1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | 3, 4, 1 | psr1bas2 22172 | . . 3 ⊢ 𝐵 = (Base‘(1o mPwSer 𝑅)) |
6 | rhmpsr1.f | . . 3 ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) | |
7 | 1oex 8495 | . . . 4 ⊢ 1o ∈ V | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ V) |
9 | rhmpsr1.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) | |
10 | 1, 2, 5, 6, 8, 9 | rhmpsr 42239 | . 2 ⊢ (𝜑 → 𝐹 ∈ ((1o mPwSer 𝑅) RingHom (1o mPwSer 𝑆))) |
11 | eqid 2726 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
12 | 3, 11, 1 | psr1bas2 22172 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(1o mPwSer 𝑅)) |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → (Base‘𝑃) = (Base‘(1o mPwSer 𝑅))) |
14 | rhmpsr1.q | . . . . 5 ⊢ 𝑄 = (PwSer1‘𝑆) | |
15 | eqid 2726 | . . . . 5 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
16 | 14, 15, 2 | psr1bas2 22172 | . . . 4 ⊢ (Base‘𝑄) = (Base‘(1o mPwSer 𝑆)) |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (Base‘𝑄) = (Base‘(1o mPwSer 𝑆))) |
18 | eqidd 2727 | . . 3 ⊢ (𝜑 → (Base‘𝑃) = (Base‘𝑃)) | |
19 | eqidd 2727 | . . 3 ⊢ (𝜑 → (Base‘𝑄) = (Base‘𝑄)) | |
20 | eqid 2726 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
21 | 3, 1, 20 | psr1plusg 22203 | . . . . . 6 ⊢ (+g‘𝑃) = (+g‘(1o mPwSer 𝑅)) |
22 | 21 | eqcomi 2735 | . . . . 5 ⊢ (+g‘(1o mPwSer 𝑅)) = (+g‘𝑃) |
23 | 22 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (+g‘(1o mPwSer 𝑅)) = (+g‘𝑃)) |
24 | 23 | oveqd 7430 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(+g‘(1o mPwSer 𝑅))𝑦) = (𝑥(+g‘𝑃)𝑦)) |
25 | eqid 2726 | . . . . . . 7 ⊢ (+g‘𝑄) = (+g‘𝑄) | |
26 | 14, 2, 25 | psr1plusg 22203 | . . . . . 6 ⊢ (+g‘𝑄) = (+g‘(1o mPwSer 𝑆)) |
27 | 26 | eqcomi 2735 | . . . . 5 ⊢ (+g‘(1o mPwSer 𝑆)) = (+g‘𝑄) |
28 | 27 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (+g‘(1o mPwSer 𝑆)) = (+g‘𝑄)) |
29 | 28 | oveqd 7430 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(+g‘(1o mPwSer 𝑆))𝑦) = (𝑥(+g‘𝑄)𝑦)) |
30 | eqid 2726 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
31 | 3, 1, 30 | psr1mulr 22205 | . . . . . 6 ⊢ (.r‘𝑃) = (.r‘(1o mPwSer 𝑅)) |
32 | 31 | eqcomi 2735 | . . . . 5 ⊢ (.r‘(1o mPwSer 𝑅)) = (.r‘𝑃) |
33 | 32 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (.r‘(1o mPwSer 𝑅)) = (.r‘𝑃)) |
34 | 33 | oveqd 7430 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘(1o mPwSer 𝑅))𝑦) = (𝑥(.r‘𝑃)𝑦)) |
35 | eqid 2726 | . . . . . . 7 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
36 | 14, 2, 35 | psr1mulr 22205 | . . . . . 6 ⊢ (.r‘𝑄) = (.r‘(1o mPwSer 𝑆)) |
37 | 36 | eqcomi 2735 | . . . . 5 ⊢ (.r‘(1o mPwSer 𝑆)) = (.r‘𝑄) |
38 | 37 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (.r‘(1o mPwSer 𝑆)) = (.r‘𝑄)) |
39 | 38 | oveqd 7430 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(.r‘(1o mPwSer 𝑆))𝑦) = (𝑥(.r‘𝑄)𝑦)) |
40 | 13, 17, 18, 19, 24, 29, 34, 39 | rhmpropd 20586 | . 2 ⊢ (𝜑 → ((1o mPwSer 𝑅) RingHom (1o mPwSer 𝑆)) = (𝑃 RingHom 𝑄)) |
41 | 10, 40 | eleqtrd 2828 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ↦ cmpt 5226 ∘ ccom 5676 ‘cfv 6543 (class class class)co 7413 1oc1o 8478 Basecbs 17205 +gcplusg 17258 .rcmulr 17259 RingHom crh 20444 mPwSer cmps 21894 PwSer1cps1 22157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7866 df-1st 7992 df-2nd 7993 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9396 df-sup 9475 df-oi 9543 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-3 12319 df-4 12320 df-5 12321 df-6 12322 df-7 12323 df-8 12324 df-9 12325 df-n0 12516 df-z 12602 df-dec 12721 df-uz 12866 df-fz 13530 df-fzo 13673 df-seq 14013 df-hash 14340 df-struct 17141 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-ress 17235 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-hom 17282 df-cco 17283 df-0g 17448 df-gsum 17449 df-prds 17454 df-pws 17456 df-mre 17591 df-mrc 17592 df-acs 17594 df-mgm 18625 df-sgrp 18704 df-mnd 18720 df-mhm 18765 df-submnd 18766 df-grp 18923 df-minusg 18924 df-mulg 19055 df-ghm 19200 df-cntz 19304 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20129 df-ur 20158 df-ring 20211 df-rhm 20447 df-psr 21899 df-opsr 21903 df-psr1 22162 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |