Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpsr1 Structured version   Visualization version   GIF version

Theorem rhmpsr1 42540
Description: Provide a ring homomorphism between two univariate power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmpsr1.p 𝑃 = (PwSer1𝑅)
rhmpsr1.q 𝑄 = (PwSer1𝑆)
rhmpsr1.b 𝐵 = (Base‘𝑃)
rhmpsr1.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmpsr1.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmpsr1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Distinct variable groups:   𝐵,𝑝   𝐻,𝑝   𝑅,𝑝   𝑆,𝑝   𝜑,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑄(𝑝)   𝐹(𝑝)

Proof of Theorem rhmpsr1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
2 eqid 2735 . . 3 (1o mPwSer 𝑆) = (1o mPwSer 𝑆)
3 rhmpsr1.p . . . 4 𝑃 = (PwSer1𝑅)
4 rhmpsr1.b . . . 4 𝐵 = (Base‘𝑃)
53, 4, 1psr1bas2 22207 . . 3 𝐵 = (Base‘(1o mPwSer 𝑅))
6 rhmpsr1.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
7 1oex 8515 . . . 4 1o ∈ V
87a1i 11 . . 3 (𝜑 → 1o ∈ V)
9 rhmpsr1.h . . 3 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
101, 2, 5, 6, 8, 9rhmpsr 42539 . 2 (𝜑𝐹 ∈ ((1o mPwSer 𝑅) RingHom (1o mPwSer 𝑆)))
11 eqid 2735 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
123, 11, 1psr1bas2 22207 . . . 4 (Base‘𝑃) = (Base‘(1o mPwSer 𝑅))
1312a1i 11 . . 3 (𝜑 → (Base‘𝑃) = (Base‘(1o mPwSer 𝑅)))
14 rhmpsr1.q . . . . 5 𝑄 = (PwSer1𝑆)
15 eqid 2735 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
1614, 15, 2psr1bas2 22207 . . . 4 (Base‘𝑄) = (Base‘(1o mPwSer 𝑆))
1716a1i 11 . . 3 (𝜑 → (Base‘𝑄) = (Base‘(1o mPwSer 𝑆)))
18 eqidd 2736 . . 3 (𝜑 → (Base‘𝑃) = (Base‘𝑃))
19 eqidd 2736 . . 3 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
20 eqid 2735 . . . . . . 7 (+g𝑃) = (+g𝑃)
213, 1, 20psr1plusg 22238 . . . . . 6 (+g𝑃) = (+g‘(1o mPwSer 𝑅))
2221eqcomi 2744 . . . . 5 (+g‘(1o mPwSer 𝑅)) = (+g𝑃)
2322a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (+g‘(1o mPwSer 𝑅)) = (+g𝑃))
2423oveqd 7448 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(+g‘(1o mPwSer 𝑅))𝑦) = (𝑥(+g𝑃)𝑦))
25 eqid 2735 . . . . . . 7 (+g𝑄) = (+g𝑄)
2614, 2, 25psr1plusg 22238 . . . . . 6 (+g𝑄) = (+g‘(1o mPwSer 𝑆))
2726eqcomi 2744 . . . . 5 (+g‘(1o mPwSer 𝑆)) = (+g𝑄)
2827a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (+g‘(1o mPwSer 𝑆)) = (+g𝑄))
2928oveqd 7448 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(+g‘(1o mPwSer 𝑆))𝑦) = (𝑥(+g𝑄)𝑦))
30 eqid 2735 . . . . . . 7 (.r𝑃) = (.r𝑃)
313, 1, 30psr1mulr 22240 . . . . . 6 (.r𝑃) = (.r‘(1o mPwSer 𝑅))
3231eqcomi 2744 . . . . 5 (.r‘(1o mPwSer 𝑅)) = (.r𝑃)
3332a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (.r‘(1o mPwSer 𝑅)) = (.r𝑃))
3433oveqd 7448 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘(1o mPwSer 𝑅))𝑦) = (𝑥(.r𝑃)𝑦))
35 eqid 2735 . . . . . . 7 (.r𝑄) = (.r𝑄)
3614, 2, 35psr1mulr 22240 . . . . . 6 (.r𝑄) = (.r‘(1o mPwSer 𝑆))
3736eqcomi 2744 . . . . 5 (.r‘(1o mPwSer 𝑆)) = (.r𝑄)
3837a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (.r‘(1o mPwSer 𝑆)) = (.r𝑄))
3938oveqd 7448 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑄) ∧ 𝑦 ∈ (Base‘𝑄))) → (𝑥(.r‘(1o mPwSer 𝑆))𝑦) = (𝑥(.r𝑄)𝑦))
4013, 17, 18, 19, 24, 29, 34, 39rhmpropd 20626 . 2 (𝜑 → ((1o mPwSer 𝑅) RingHom (1o mPwSer 𝑆)) = (𝑃 RingHom 𝑄))
4110, 40eleqtrd 2841 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cmpt 5231  ccom 5693  cfv 6563  (class class class)co 7431  1oc1o 8498  Basecbs 17245  +gcplusg 17298  .rcmulr 17299   RingHom crh 20486   mPwSer cmps 21942  PwSer1cps1 22192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-mulg 19099  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-rhm 20489  df-psr 21947  df-opsr 21951  df-psr1 22197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator