MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngisomring Structured version   Visualization version   GIF version

Theorem rngisomring 20493
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then both rings are unital. (Contributed by AV, 27-Feb-2025.)
Assertion
Ref Expression
rngisomring ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑆 ∈ Ring)

Proof of Theorem rngisomring
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑆 ∈ Rng)
2 eqid 2740 . . . . 5 (1r𝑅) = (1r𝑅)
3 eqid 2740 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
42, 3rngisomfv1 20491 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘(1r𝑅)) ∈ (Base‘𝑆))
543adant2 1131 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘(1r𝑅)) ∈ (Base‘𝑆))
6 oveq1 7455 . . . . . . 7 (𝑖 = (𝐹‘(1r𝑅)) → (𝑖(.r𝑆)𝑥) = ((𝐹‘(1r𝑅))(.r𝑆)𝑥))
76eqeq1d 2742 . . . . . 6 (𝑖 = (𝐹‘(1r𝑅)) → ((𝑖(.r𝑆)𝑥) = 𝑥 ↔ ((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥))
8 oveq2 7456 . . . . . . 7 (𝑖 = (𝐹‘(1r𝑅)) → (𝑥(.r𝑆)𝑖) = (𝑥(.r𝑆)(𝐹‘(1r𝑅))))
98eqeq1d 2742 . . . . . 6 (𝑖 = (𝐹‘(1r𝑅)) → ((𝑥(.r𝑆)𝑖) = 𝑥 ↔ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥))
107, 9anbi12d 631 . . . . 5 (𝑖 = (𝐹‘(1r𝑅)) → (((𝑖(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)𝑖) = 𝑥) ↔ (((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)))
1110ralbidv 3184 . . . 4 (𝑖 = (𝐹‘(1r𝑅)) → (∀𝑥 ∈ (Base‘𝑆)((𝑖(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)))
1211adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑖 = (𝐹‘(1r𝑅))) → (∀𝑥 ∈ (Base‘𝑆)((𝑖(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)))
13 eqid 2740 . . . 4 (.r𝑆) = (.r𝑆)
142, 3, 13rngisom1 20492 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥))
155, 12, 14rspcedvd 3637 . 2 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∃𝑖 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)((𝑖(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)𝑖) = 𝑥))
163, 13isringrng 20310 . 2 (𝑆 ∈ Ring ↔ (𝑆 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)((𝑖(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)𝑖) = 𝑥)))
171, 15, 16sylanbrc 582 1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑆 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  Rngcrng 20179  1rcur 20208  Ringcrg 20260   RngIso crngim 20461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-mgmhm 18730  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-rnghm 20462  df-rngim 20463
This theorem is referenced by:  rngringbdlem2  21340
  Copyright terms: Public domain W3C validator