Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | eqid 2738 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
3 | | eqid 2738 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
4 | 1, 2, 3 | dfur2 19740 |
. 2
⊢
(1r‘𝑅) = (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥))) |
5 | | rngurd.z |
. . . 4
⊢ (𝜑 → 1 ∈ 𝐵) |
6 | | rngurd.b |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
7 | 5, 6 | eleqtrd 2841 |
. . 3
⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
8 | | rngurd.i |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) |
9 | | rngurd.j |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) |
10 | 8, 9 | jca 512 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥)) |
11 | 10 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥)) |
12 | | rngurd.p |
. . . . . . . . 9
⊢ (𝜑 → · =
(.r‘𝑅)) |
13 | 12 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → · =
(.r‘𝑅)) |
14 | 13 | oveqd 7292 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = ( 1 (.r‘𝑅)𝑥)) |
15 | 14 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 (.r‘𝑅)𝑥) = 𝑥)) |
16 | 13 | oveqd 7292 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = (𝑥(.r‘𝑅) 1 )) |
17 | 16 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 1 ) = 𝑥 ↔ (𝑥(.r‘𝑅) 1 ) = 𝑥)) |
18 | 15, 17 | anbi12d 631 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ (( 1 (.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅) 1 ) = 𝑥))) |
19 | 6, 18 | raleqbidva 3354 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅) 1 ) = 𝑥))) |
20 | 11, 19 | mpbid 231 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅) 1 ) = 𝑥)) |
21 | 6 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑒 ∈ 𝐵 ↔ 𝑒 ∈ (Base‘𝑅))) |
22 | 13 | oveqd 7292 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑒 · 𝑥) = (𝑒(.r‘𝑅)𝑥)) |
23 | 22 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(.r‘𝑅)𝑥) = 𝑥)) |
24 | 13 | oveqd 7292 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑒) = (𝑥(.r‘𝑅)𝑒)) |
25 | 24 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(.r‘𝑅)𝑒) = 𝑥)) |
26 | 23, 25 | anbi12d 631 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥))) |
27 | 6, 26 | raleqbidva 3354 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥))) |
28 | 21, 27 | anbi12d 631 |
. . . . . . 7
⊢ (𝜑 → ((𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥)))) |
29 | 8 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 1 · 𝑥) = 𝑥) |
30 | 29 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ( 1 · 𝑥) = 𝑥) |
31 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐵) → 𝑒 ∈ 𝐵) |
32 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑥 = 𝑒) → 𝑥 = 𝑒) |
33 | 32 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑥 = 𝑒) → ( 1 · 𝑥) = ( 1 · 𝑒)) |
34 | 33, 32 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑥 = 𝑒) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 · 𝑒) = 𝑒)) |
35 | 31, 34 | rspcdv 3553 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ( 1 · 𝑥) = 𝑥 → ( 1 · 𝑒) = 𝑒)) |
36 | 30, 35 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐵) → ( 1 · 𝑒) = 𝑒) |
37 | 36 | adantrr 714 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 𝑒) |
38 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 1 ∈ 𝐵) |
39 | | simprr 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) |
40 | | oveq2 7283 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → (𝑒 · 𝑥) = (𝑒 · 1 )) |
41 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → 𝑥 = 1 ) |
42 | 40, 41 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒 · 1 ) = 1 )) |
43 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → (𝑥 · 𝑒) = ( 1 · 𝑒)) |
44 | 43, 41 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → ((𝑥 · 𝑒) = 𝑥 ↔ ( 1 · 𝑒) = 1 )) |
45 | 42, 44 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 ))) |
46 | 45 | rspcva 3559 |
. . . . . . . . . . 11
⊢ (( 1 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 )) |
47 | 46 | simprd 496 |
. . . . . . . . . 10
⊢ (( 1 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ( 1 · 𝑒) = 1 ) |
48 | 38, 39, 47 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 1 ) |
49 | 37, 48 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 𝑒 = 1 ) |
50 | 49 | ex 413 |
. . . . . . 7
⊢ (𝜑 → ((𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → 𝑒 = 1 )) |
51 | 28, 50 | sylbird 259 |
. . . . . 6
⊢ (𝜑 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥)) → 𝑒 = 1 )) |
52 | 51 | alrimiv 1930 |
. . . . 5
⊢ (𝜑 → ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥)) → 𝑒 = 1 )) |
53 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑒 = 1 → (𝑒 ∈ (Base‘𝑅) ↔ 1 ∈ (Base‘𝑅))) |
54 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑒 = 1 → (𝑒(.r‘𝑅)𝑥) = ( 1 (.r‘𝑅)𝑥)) |
55 | 54 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑒 = 1 → ((𝑒(.r‘𝑅)𝑥) = 𝑥 ↔ ( 1 (.r‘𝑅)𝑥) = 𝑥)) |
56 | 55 | ovanraleqv 7299 |
. . . . . . 7
⊢ (𝑒 = 1 → (∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅) 1 ) = 𝑥))) |
57 | 53, 56 | anbi12d 631 |
. . . . . 6
⊢ (𝑒 = 1 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅) 1 ) = 𝑥)))) |
58 | 57 | eqeu 3641 |
. . . . 5
⊢ (( 1 ∈
(Base‘𝑅) ∧ (
1 ∈
(Base‘𝑅) ∧
∀𝑥 ∈
(Base‘𝑅)(( 1
(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅) 1 ) = 𝑥)) ∧ ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥)) → 𝑒 = 1 )) → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥))) |
59 | 7, 7, 20, 52, 58 | syl121anc 1374 |
. . . 4
⊢ (𝜑 → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥))) |
60 | 57 | iota2 6422 |
. . . 4
⊢ (( 1 ∈ 𝐵 ∧ ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥))) → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥))) = 1 )) |
61 | 5, 59, 60 | syl2anc 584 |
. . 3
⊢ (𝜑 → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥))) = 1 )) |
62 | 7, 20, 61 | mpbi2and 709 |
. 2
⊢ (𝜑 → (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)𝑒) = 𝑥))) = 1 ) |
63 | 4, 62 | eqtr2id 2791 |
1
⊢ (𝜑 → 1 =
(1r‘𝑅)) |