Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngurd Structured version   Visualization version   GIF version

Theorem rngurd 30907
Description: Deduce the unit of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.)
Hypotheses
Ref Expression
rngurd.b (𝜑𝐵 = (Base‘𝑅))
rngurd.p (𝜑· = (.r𝑅))
rngurd.z (𝜑1𝐵)
rngurd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
rngurd.j ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
Assertion
Ref Expression
rngurd (𝜑1 = (1r𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, 1   𝑥, ·   𝜑,𝑥

Proof of Theorem rngurd
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2798 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2798 . . 3 (1r𝑅) = (1r𝑅)
41, 2, 3dfur2 19247 . 2 (1r𝑅) = (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
5 rngurd.z . . . 4 (𝜑1𝐵)
6 rngurd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
75, 6eleqtrd 2892 . . 3 (𝜑1 ∈ (Base‘𝑅))
8 rngurd.i . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
9 rngurd.j . . . . . 6 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
108, 9jca 515 . . . . 5 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
1110ralrimiva 3149 . . . 4 (𝜑 → ∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
12 rngurd.p . . . . . . . . 9 (𝜑· = (.r𝑅))
1312adantr 484 . . . . . . . 8 ((𝜑𝑥𝐵) → · = (.r𝑅))
1413oveqd 7152 . . . . . . 7 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = ( 1 (.r𝑅)𝑥))
1514eqeq1d 2800 . . . . . 6 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
1613oveqd 7152 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = (𝑥(.r𝑅) 1 ))
1716eqeq1d 2800 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑥 · 1 ) = 𝑥 ↔ (𝑥(.r𝑅) 1 ) = 𝑥))
1815, 17anbi12d 633 . . . . 5 ((𝜑𝑥𝐵) → ((( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ (( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
196, 18raleqbidva 3370 . . . 4 (𝜑 → (∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
2011, 19mpbid 235 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))
216eleq2d 2875 . . . . . . . 8 (𝜑 → (𝑒𝐵𝑒 ∈ (Base‘𝑅)))
2213oveqd 7152 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑒 · 𝑥) = (𝑒(.r𝑅)𝑥))
2322eqeq1d 2800 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(.r𝑅)𝑥) = 𝑥))
2413oveqd 7152 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑥 · 𝑒) = (𝑥(.r𝑅)𝑒))
2524eqeq1d 2800 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(.r𝑅)𝑒) = 𝑥))
2623, 25anbi12d 633 . . . . . . . . 9 ((𝜑𝑥𝐵) → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
276, 26raleqbidva 3370 . . . . . . . 8 (𝜑 → (∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
2821, 27anbi12d 633 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))))
298ralrimiva 3149 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
3029adantr 484 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
31 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
32 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → 𝑥 = 𝑒)
3332oveq2d 7151 . . . . . . . . . . . . 13 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → ( 1 · 𝑥) = ( 1 · 𝑒))
3433, 32eqeq12d 2814 . . . . . . . . . . . 12 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 · 𝑒) = 𝑒))
3531, 34rspcdv 3563 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (∀𝑥𝐵 ( 1 · 𝑥) = 𝑥 → ( 1 · 𝑒) = 𝑒))
3630, 35mpd 15 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ( 1 · 𝑒) = 𝑒)
3736adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 𝑒)
385adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 1𝐵)
39 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))
40 oveq2 7143 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑒 · 𝑥) = (𝑒 · 1 ))
41 id 22 . . . . . . . . . . . . . 14 (𝑥 = 1𝑥 = 1 )
4240, 41eqeq12d 2814 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒 · 1 ) = 1 ))
43 oveq1 7142 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑥 · 𝑒) = ( 1 · 𝑒))
4443, 41eqeq12d 2814 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑥 · 𝑒) = 𝑥 ↔ ( 1 · 𝑒) = 1 ))
4542, 44anbi12d 633 . . . . . . . . . . . 12 (𝑥 = 1 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 )))
4645rspcva 3569 . . . . . . . . . . 11 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 ))
4746simprd 499 . . . . . . . . . 10 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ( 1 · 𝑒) = 1 )
4838, 39, 47syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 1 )
4937, 48eqtr3d 2835 . . . . . . . 8 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 𝑒 = 1 )
5049ex 416 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → 𝑒 = 1 ))
5128, 50sylbird 263 . . . . . 6 (𝜑 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
5251alrimiv 1928 . . . . 5 (𝜑 → ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
53 eleq1 2877 . . . . . . 7 (𝑒 = 1 → (𝑒 ∈ (Base‘𝑅) ↔ 1 ∈ (Base‘𝑅)))
54 oveq1 7142 . . . . . . . . 9 (𝑒 = 1 → (𝑒(.r𝑅)𝑥) = ( 1 (.r𝑅)𝑥))
5554eqeq1d 2800 . . . . . . . 8 (𝑒 = 1 → ((𝑒(.r𝑅)𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
5655ovanraleqv 7159 . . . . . . 7 (𝑒 = 1 → (∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
5753, 56anbi12d 633 . . . . . 6 (𝑒 = 1 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))))
5857eqeu 3645 . . . . 5 (( 1 ∈ (Base‘𝑅) ∧ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ∧ ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 )) → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
597, 7, 20, 52, 58syl121anc 1372 . . . 4 (𝜑 → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
6057iota2 6313 . . . 4 (( 1𝐵 ∧ ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
615, 59, 60syl2anc 587 . . 3 (𝜑 → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
627, 20, 61mpbi2and 711 . 2 (𝜑 → (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 )
634, 62syl5req 2846 1 (𝜑1 = (1r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  ∃!weu 2628  wral 3106  cio 6281  cfv 6324  (class class class)co 7135  Basecbs 16475  .rcmulr 16558  1rcur 19244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgp 19233  df-ur 19245
This theorem is referenced by:  ress1r  30911
  Copyright terms: Public domain W3C validator