| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of reals. For integer exponents, see reexpclz 14047. (Contributed by NM, 14-Dec-2005.) |
| Ref | Expression |
|---|---|
| reexpcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 11125 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | remulcl 11153 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
| 3 | 1re 11174 | . 2 ⊢ 1 ∈ ℝ | |
| 4 | 1, 2, 3 | expcllem 14037 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 ℕ0cn0 12442 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: expgt1 14065 resqcl 14089 reexpcld 14128 rpexpmord 14133 leexp2r 14139 leexp1a 14140 bernneq 14194 bernneq3 14196 expnbnd 14197 expnlbnd 14198 expmulnbnd 14200 digit2 14201 digit1 14202 expnngt1 14206 faclbnd 14255 faclbnd2 14256 faclbnd3 14257 faclbnd4lem1 14258 faclbnd5 14263 faclbnd6 14264 geomulcvg 15842 reeftcl 16040 ege2le3 16056 eftlub 16077 eflegeo 16089 resin4p 16106 recos4p 16107 ef01bndlem 16152 sin01bnd 16153 cos01bnd 16154 sin01gt0 16158 rpnnen2lem2 16183 rpnnen2lem4 16185 rpnnen2lem11 16192 powm2modprm 16774 prmreclem6 16892 mbfi1fseqlem6 25621 aaliou3lem8 26253 radcnvlem1 26322 abelthlem5 26345 abelthlem7 26348 tangtx 26414 advlogexp 26564 logtayllem 26568 leibpilem2 26851 leibpi 26852 leibpisum 26853 basellem3 26993 chtublem 27122 logexprlim 27136 dchrisum0flblem1 27419 pntlem3 27520 ostth2lem1 27529 ostth2lem3 27546 ostth3 27549 hgt750lem 34642 tgoldbachgnn 34650 subfacval2 35174 nn0prpw 36311 mblfinlem1 37651 mblfinlem2 37652 bfplem1 37816 lcmineqlem20 42036 3lexlogpow5ineq1 42042 tgoldbach 47818 dignn0fr 48590 digexp 48596 dig2bits 48603 |
| Copyright terms: Public domain | W3C validator |