| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of reals. For integer exponents, see reexpclz 14123. (Contributed by NM, 14-Dec-2005.) |
| Ref | Expression |
|---|---|
| reexpcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 11212 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | remulcl 11240 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
| 3 | 1re 11261 | . 2 ⊢ 1 ∈ ℝ | |
| 4 | 1, 2, 3 | expcllem 14113 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7431 ℝcr 11154 ℕ0cn0 12526 ↑cexp 14102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-seq 14043 df-exp 14103 |
| This theorem is referenced by: expgt1 14141 resqcl 14164 reexpcld 14203 rpexpmord 14208 leexp2r 14214 leexp1a 14215 bernneq 14268 bernneq3 14270 expnbnd 14271 expnlbnd 14272 expmulnbnd 14274 digit2 14275 digit1 14276 expnngt1 14280 faclbnd 14329 faclbnd2 14330 faclbnd3 14331 faclbnd4lem1 14332 faclbnd5 14337 faclbnd6 14338 geomulcvg 15912 reeftcl 16110 ege2le3 16126 eftlub 16145 eflegeo 16157 resin4p 16174 recos4p 16175 ef01bndlem 16220 sin01bnd 16221 cos01bnd 16222 sin01gt0 16226 rpnnen2lem2 16251 rpnnen2lem4 16253 rpnnen2lem11 16260 powm2modprm 16841 prmreclem6 16959 mbfi1fseqlem6 25755 aaliou3lem8 26387 radcnvlem1 26456 abelthlem5 26479 abelthlem7 26482 tangtx 26547 advlogexp 26697 logtayllem 26701 leibpilem2 26984 leibpi 26985 leibpisum 26986 basellem3 27126 chtublem 27255 logexprlim 27269 dchrisum0flblem1 27552 pntlem3 27653 ostth2lem1 27662 ostth2lem3 27679 ostth3 27682 hgt750lem 34666 tgoldbachgnn 34674 subfacval2 35192 nn0prpw 36324 mblfinlem1 37664 mblfinlem2 37665 bfplem1 37829 lcmineqlem20 42049 3lexlogpow5ineq1 42055 tgoldbach 47804 dignn0fr 48522 digexp 48528 dig2bits 48535 |
| Copyright terms: Public domain | W3C validator |