| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of reals. For integer exponents, see reexpclz 14008. (Contributed by NM, 14-Dec-2005.) |
| Ref | Expression |
|---|---|
| reexpcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 11085 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | remulcl 11113 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
| 3 | 1re 11134 | . 2 ⊢ 1 ∈ ℝ | |
| 4 | 1, 2, 3 | expcllem 13998 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7353 ℝcr 11027 ℕ0cn0 12403 ↑cexp 13987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-seq 13928 df-exp 13988 |
| This theorem is referenced by: expgt1 14026 resqcl 14050 reexpcld 14089 rpexpmord 14094 leexp2r 14100 leexp1a 14101 bernneq 14155 bernneq3 14157 expnbnd 14158 expnlbnd 14159 expmulnbnd 14161 digit2 14162 digit1 14163 expnngt1 14167 faclbnd 14216 faclbnd2 14217 faclbnd3 14218 faclbnd4lem1 14219 faclbnd5 14224 faclbnd6 14225 geomulcvg 15802 reeftcl 16000 ege2le3 16016 eftlub 16037 eflegeo 16049 resin4p 16066 recos4p 16067 ef01bndlem 16112 sin01bnd 16113 cos01bnd 16114 sin01gt0 16118 rpnnen2lem2 16143 rpnnen2lem4 16145 rpnnen2lem11 16152 powm2modprm 16734 prmreclem6 16852 mbfi1fseqlem6 25638 aaliou3lem8 26270 radcnvlem1 26339 abelthlem5 26362 abelthlem7 26365 tangtx 26431 advlogexp 26581 logtayllem 26585 leibpilem2 26868 leibpi 26869 leibpisum 26870 basellem3 27010 chtublem 27139 logexprlim 27153 dchrisum0flblem1 27436 pntlem3 27537 ostth2lem1 27546 ostth2lem3 27563 ostth3 27566 hgt750lem 34638 tgoldbachgnn 34646 subfacval2 35179 nn0prpw 36316 mblfinlem1 37656 mblfinlem2 37657 bfplem1 37821 lcmineqlem20 42041 3lexlogpow5ineq1 42047 tgoldbach 47821 dignn0fr 48606 digexp 48612 dig2bits 48619 |
| Copyright terms: Public domain | W3C validator |