| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of reals. For integer exponents, see reexpclz 14054. (Contributed by NM, 14-Dec-2005.) |
| Ref | Expression |
|---|---|
| reexpcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 11132 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | remulcl 11160 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
| 3 | 1re 11181 | . 2 ⊢ 1 ∈ ℝ | |
| 4 | 1, 2, 3 | expcllem 14044 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7390 ℝcr 11074 ℕ0cn0 12449 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: expgt1 14072 resqcl 14096 reexpcld 14135 rpexpmord 14140 leexp2r 14146 leexp1a 14147 bernneq 14201 bernneq3 14203 expnbnd 14204 expnlbnd 14205 expmulnbnd 14207 digit2 14208 digit1 14209 expnngt1 14213 faclbnd 14262 faclbnd2 14263 faclbnd3 14264 faclbnd4lem1 14265 faclbnd5 14270 faclbnd6 14271 geomulcvg 15849 reeftcl 16047 ege2le3 16063 eftlub 16084 eflegeo 16096 resin4p 16113 recos4p 16114 ef01bndlem 16159 sin01bnd 16160 cos01bnd 16161 sin01gt0 16165 rpnnen2lem2 16190 rpnnen2lem4 16192 rpnnen2lem11 16199 powm2modprm 16781 prmreclem6 16899 mbfi1fseqlem6 25628 aaliou3lem8 26260 radcnvlem1 26329 abelthlem5 26352 abelthlem7 26355 tangtx 26421 advlogexp 26571 logtayllem 26575 leibpilem2 26858 leibpi 26859 leibpisum 26860 basellem3 27000 chtublem 27129 logexprlim 27143 dchrisum0flblem1 27426 pntlem3 27527 ostth2lem1 27536 ostth2lem3 27553 ostth3 27556 hgt750lem 34649 tgoldbachgnn 34657 subfacval2 35181 nn0prpw 36318 mblfinlem1 37658 mblfinlem2 37659 bfplem1 37823 lcmineqlem20 42043 3lexlogpow5ineq1 42049 tgoldbach 47822 dignn0fr 48594 digexp 48600 dig2bits 48607 |
| Copyright terms: Public domain | W3C validator |