Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reexpcl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.) |
Ref | Expression |
---|---|
reexpcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 10834 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | remulcl 10862 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
3 | 1re 10881 | . 2 ⊢ 1 ∈ ℝ | |
4 | 1, 2, 3 | expcllem 13696 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2112 (class class class)co 7252 ℝcr 10776 ℕ0cn0 12138 ↑cexp 13685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-n0 12139 df-z 12225 df-uz 12487 df-seq 13625 df-exp 13686 |
This theorem is referenced by: expgt1 13724 resqcl 13747 reexpcld 13784 rpexpmord 13789 leexp2r 13795 leexp1a 13796 bernneq 13847 bernneq3 13849 expnbnd 13850 expnlbnd 13851 expmulnbnd 13853 digit2 13854 digit1 13855 expnngt1 13859 faclbnd 13907 faclbnd2 13908 faclbnd3 13909 faclbnd4lem1 13910 faclbnd5 13915 faclbnd6 13916 geomulcvg 15491 reeftcl 15687 ege2le3 15702 eftlub 15721 eflegeo 15733 resin4p 15750 recos4p 15751 ef01bndlem 15796 sin01bnd 15797 cos01bnd 15798 sin01gt0 15802 rpnnen2lem2 15827 rpnnen2lem4 15829 rpnnen2lem11 15836 powm2modprm 16407 prmreclem6 16525 mbfi1fseqlem6 24765 aaliou3lem8 25385 radcnvlem1 25452 abelthlem5 25474 abelthlem7 25477 tangtx 25542 advlogexp 25690 logtayllem 25694 leibpilem2 25971 leibpi 25972 leibpisum 25973 basellem3 26112 chtublem 26239 logexprlim 26253 dchrisum0flblem1 26536 pntlem3 26637 ostth2lem1 26646 ostth2lem3 26663 ostth3 26666 hgt750lem 32506 tgoldbachgnn 32514 subfacval2 33024 nn0prpw 34414 mblfinlem1 35720 mblfinlem2 35721 bfplem1 35886 lcmineqlem20 39963 3lexlogpow5ineq1 39969 tgoldbach 45130 dignn0fr 45808 digexp 45814 dig2bits 45821 |
Copyright terms: Public domain | W3C validator |