| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of reals. For integer exponents, see reexpclz 13984. (Contributed by NM, 14-Dec-2005.) |
| Ref | Expression |
|---|---|
| reexpcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 11058 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | remulcl 11086 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
| 3 | 1re 11107 | . 2 ⊢ 1 ∈ ℝ | |
| 4 | 1, 2, 3 | expcllem 13974 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 (class class class)co 7341 ℝcr 11000 ℕ0cn0 12376 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-exp 13964 |
| This theorem is referenced by: expgt1 14002 resqcl 14026 reexpcld 14065 rpexpmord 14070 leexp2r 14076 leexp1a 14077 bernneq 14131 bernneq3 14133 expnbnd 14134 expnlbnd 14135 expmulnbnd 14137 digit2 14138 digit1 14139 expnngt1 14143 faclbnd 14192 faclbnd2 14193 faclbnd3 14194 faclbnd4lem1 14195 faclbnd5 14200 faclbnd6 14201 geomulcvg 15778 reeftcl 15976 ege2le3 15992 eftlub 16013 eflegeo 16025 resin4p 16042 recos4p 16043 ef01bndlem 16088 sin01bnd 16089 cos01bnd 16090 sin01gt0 16094 rpnnen2lem2 16119 rpnnen2lem4 16121 rpnnen2lem11 16128 powm2modprm 16710 prmreclem6 16828 mbfi1fseqlem6 25643 aaliou3lem8 26275 radcnvlem1 26344 abelthlem5 26367 abelthlem7 26370 tangtx 26436 advlogexp 26586 logtayllem 26590 leibpilem2 26873 leibpi 26874 leibpisum 26875 basellem3 27015 chtublem 27144 logexprlim 27158 dchrisum0flblem1 27441 pntlem3 27542 ostth2lem1 27551 ostth2lem3 27568 ostth3 27571 hgt750lem 34656 tgoldbachgnn 34664 subfacval2 35223 nn0prpw 36357 mblfinlem1 37697 mblfinlem2 37698 bfplem1 37862 lcmineqlem20 42081 3lexlogpow5ineq1 42087 tgoldbach 47848 dignn0fr 48633 digexp 48639 dig2bits 48646 |
| Copyright terms: Public domain | W3C validator |