Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reexpcl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.) |
Ref | Expression |
---|---|
reexpcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 10625 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | remulcl 10653 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
3 | 1re 10672 | . 2 ⊢ 1 ∈ ℝ | |
4 | 1, 2, 3 | expcllem 13483 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∈ wcel 2112 (class class class)co 7151 ℝcr 10567 ℕ0cn0 11927 ↑cexp 13472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-n0 11928 df-z 12014 df-uz 12276 df-seq 13412 df-exp 13473 |
This theorem is referenced by: expgt1 13510 resqcl 13533 reexpcld 13570 rpexpmord 13575 leexp2r 13581 leexp1a 13582 bernneq 13633 bernneq3 13635 expnbnd 13636 expnlbnd 13637 expmulnbnd 13639 digit2 13640 digit1 13641 expnngt1 13645 faclbnd 13693 faclbnd2 13694 faclbnd3 13695 faclbnd4lem1 13696 faclbnd5 13701 faclbnd6 13702 geomulcvg 15273 reeftcl 15469 ege2le3 15484 eftlub 15503 eflegeo 15515 resin4p 15532 recos4p 15533 ef01bndlem 15578 sin01bnd 15579 cos01bnd 15580 sin01gt0 15584 rpnnen2lem2 15609 rpnnen2lem4 15611 rpnnen2lem11 15618 powm2modprm 16188 prmreclem6 16305 mbfi1fseqlem6 24413 aaliou3lem8 25033 radcnvlem1 25100 abelthlem5 25122 abelthlem7 25125 tangtx 25190 advlogexp 25338 logtayllem 25342 leibpilem2 25619 leibpi 25620 leibpisum 25621 basellem3 25760 chtublem 25887 logexprlim 25901 dchrisum0flblem1 26184 pntlem3 26285 ostth2lem1 26294 ostth2lem3 26311 ostth3 26314 hgt750lem 32143 tgoldbachgnn 32151 subfacval2 32658 nn0prpw 34054 mblfinlem1 35367 mblfinlem2 35368 bfplem1 35533 lcmineqlem20 39608 3lexlogpow5ineq1 39614 tgoldbach 44695 dignn0fr 45373 digexp 45379 dig2bits 45386 |
Copyright terms: Public domain | W3C validator |