![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signshnz | Structured version Visualization version GIF version |
Description: 𝐻 is not the empty word. (Contributed by Thierry Arnoux, 14-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
signs.h | ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) |
Ref | Expression |
---|---|
signshnz | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . . 5 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | signsv.w | . . . . 5 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
3 | signsv.t | . . . . 5 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
4 | signsv.v | . . . . 5 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
5 | signs.h | . . . . 5 ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) | |
6 | 1, 2, 3, 4, 5 | signshlen 34598 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = ((♯‘𝐹) + 1)) |
7 | lencl 14577 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐹) ∈ ℕ0) |
9 | nn0p1nn 12572 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) + 1) ∈ ℕ) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((♯‘𝐹) + 1) ∈ ℕ) |
11 | 6, 10 | eqeltrd 2841 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) ∈ ℕ) |
12 | 11 | nnne0d 12323 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) ≠ 0) |
13 | 1, 2, 3, 4, 5 | signshwrd 34597 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻 ∈ Word ℝ) |
14 | hasheq0 14408 | . . . 4 ⊢ (𝐻 ∈ Word ℝ → ((♯‘𝐻) = 0 ↔ 𝐻 = ∅)) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((♯‘𝐻) = 0 ↔ 𝐻 = ∅)) |
16 | 15 | necon3bid 2985 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((♯‘𝐻) ≠ 0 ↔ 𝐻 ≠ ∅)) |
17 | 12, 16 | mpbid 232 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∅c0 4342 ifcif 4534 {cpr 4636 {ctp 4638 〈cop 4640 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 ∘f cof 7702 ℝcr 11161 0cc0 11162 1c1 11163 + caddc 11165 · cmul 11167 − cmin 11499 -cneg 11500 ℕcn 12273 ℕ0cn0 12533 ℝ+crp 13041 ...cfz 13553 ..^cfzo 13700 ♯chash 14375 Word cword 14558 ++ cconcat 14614 〈“cs1 14639 sgncsgn 15131 Σcsu 15728 ndxcnx 17236 Basecbs 17254 +gcplusg 17307 Σg cgsu 17496 ∘f/c cofc 34090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-fz 13554 df-fzo 13701 df-hash 14376 df-word 14559 df-concat 14615 df-s1 14640 df-ofc 34091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |