![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signshnz | Structured version Visualization version GIF version |
Description: π» is not the empty word. (Contributed by Thierry Arnoux, 14-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsv.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
signsv.t | β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
signsv.v | β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
signs.h | β’ π» = ((β¨β0ββ© ++ πΉ) βf β ((πΉ ++ β¨β0ββ©) βf/c Β· πΆ)) |
Ref | Expression |
---|---|
signshnz | β’ ((πΉ β Word β β§ πΆ β β+) β π» β β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . . 5 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
2 | signsv.w | . . . . 5 β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} | |
3 | signsv.t | . . . . 5 β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) | |
4 | signsv.v | . . . . 5 β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) | |
5 | signs.h | . . . . 5 β’ π» = ((β¨β0ββ© ++ πΉ) βf β ((πΉ ++ β¨β0ββ©) βf/c Β· πΆ)) | |
6 | 1, 2, 3, 4, 5 | signshlen 34131 | . . . 4 β’ ((πΉ β Word β β§ πΆ β β+) β (β―βπ») = ((β―βπΉ) + 1)) |
7 | lencl 14489 | . . . . . 6 β’ (πΉ β Word β β (β―βπΉ) β β0) | |
8 | 7 | adantr 480 | . . . . 5 β’ ((πΉ β Word β β§ πΆ β β+) β (β―βπΉ) β β0) |
9 | nn0p1nn 12515 | . . . . 5 β’ ((β―βπΉ) β β0 β ((β―βπΉ) + 1) β β) | |
10 | 8, 9 | syl 17 | . . . 4 β’ ((πΉ β Word β β§ πΆ β β+) β ((β―βπΉ) + 1) β β) |
11 | 6, 10 | eqeltrd 2827 | . . 3 β’ ((πΉ β Word β β§ πΆ β β+) β (β―βπ») β β) |
12 | 11 | nnne0d 12266 | . 2 β’ ((πΉ β Word β β§ πΆ β β+) β (β―βπ») β 0) |
13 | 1, 2, 3, 4, 5 | signshwrd 34130 | . . . 4 β’ ((πΉ β Word β β§ πΆ β β+) β π» β Word β) |
14 | hasheq0 14328 | . . . 4 β’ (π» β Word β β ((β―βπ») = 0 β π» = β )) | |
15 | 13, 14 | syl 17 | . . 3 β’ ((πΉ β Word β β§ πΆ β β+) β ((β―βπ») = 0 β π» = β )) |
16 | 15 | necon3bid 2979 | . 2 β’ ((πΉ β Word β β§ πΆ β β+) β ((β―βπ») β 0 β π» β β )) |
17 | 12, 16 | mpbid 231 | 1 β’ ((πΉ β Word β β§ πΆ β β+) β π» β β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 β c0 4317 ifcif 4523 {cpr 4625 {ctp 4627 β¨cop 4629 β¦ cmpt 5224 βcfv 6537 (class class class)co 7405 β cmpo 7407 βf cof 7665 βcr 11111 0cc0 11112 1c1 11113 + caddc 11115 Β· cmul 11117 β cmin 11448 -cneg 11449 βcn 12216 β0cn0 12476 β+crp 12980 ...cfz 13490 ..^cfzo 13633 β―chash 14295 Word cword 14470 ++ cconcat 14526 β¨βcs1 14551 sgncsgn 15039 Ξ£csu 15638 ndxcnx 17135 Basecbs 17153 +gcplusg 17206 Ξ£g cgsu 17395 βf/c cofc 33623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-hash 14296 df-word 14471 df-concat 14527 df-s1 14552 df-ofc 33624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |