![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signshlen | Structured version Visualization version GIF version |
Description: Length of π», corresponding to the word πΉ multiplied by (π₯ β πΆ). (Contributed by Thierry Arnoux, 14-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsv.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
signsv.t | β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
signsv.v | β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
signs.h | β’ π» = ((β¨β0ββ© ++ πΉ) βf β ((πΉ ++ β¨β0ββ©) βf/c Β· πΆ)) |
Ref | Expression |
---|---|
signshlen | β’ ((πΉ β Word β β§ πΆ β β+) β (β―βπ») = ((β―βπΉ) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
2 | signsv.w | . . . 4 β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} | |
3 | signsv.t | . . . 4 β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) | |
4 | signsv.v | . . . 4 β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) | |
5 | signs.h | . . . 4 β’ π» = ((β¨β0ββ© ++ πΉ) βf β ((πΉ ++ β¨β0ββ©) βf/c Β· πΆ)) | |
6 | 1, 2, 3, 4, 5 | signshf 33894 | . . 3 β’ ((πΉ β Word β β§ πΆ β β+) β π»:(0..^((β―βπΉ) + 1))βΆβ) |
7 | ffn 6718 | . . 3 β’ (π»:(0..^((β―βπΉ) + 1))βΆβ β π» Fn (0..^((β―βπΉ) + 1))) | |
8 | hashfn 14340 | . . 3 β’ (π» Fn (0..^((β―βπΉ) + 1)) β (β―βπ») = (β―β(0..^((β―βπΉ) + 1)))) | |
9 | 6, 7, 8 | 3syl 18 | . 2 β’ ((πΉ β Word β β§ πΆ β β+) β (β―βπ») = (β―β(0..^((β―βπΉ) + 1)))) |
10 | lencl 14488 | . . . . 5 β’ (πΉ β Word β β (β―βπΉ) β β0) | |
11 | 10 | adantr 480 | . . . 4 β’ ((πΉ β Word β β§ πΆ β β+) β (β―βπΉ) β β0) |
12 | 1nn0 12493 | . . . . 5 β’ 1 β β0 | |
13 | 12 | a1i 11 | . . . 4 β’ ((πΉ β Word β β§ πΆ β β+) β 1 β β0) |
14 | 11, 13 | nn0addcld 12541 | . . 3 β’ ((πΉ β Word β β§ πΆ β β+) β ((β―βπΉ) + 1) β β0) |
15 | hashfzo0 14395 | . . 3 β’ (((β―βπΉ) + 1) β β0 β (β―β(0..^((β―βπΉ) + 1))) = ((β―βπΉ) + 1)) | |
16 | 14, 15 | syl 17 | . 2 β’ ((πΉ β Word β β§ πΆ β β+) β (β―β(0..^((β―βπΉ) + 1))) = ((β―βπΉ) + 1)) |
17 | 9, 16 | eqtrd 2771 | 1 β’ ((πΉ β Word β β§ πΆ β β+) β (β―βπ») = ((β―βπΉ) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 ifcif 4529 {cpr 4631 {ctp 4633 β¨cop 4635 β¦ cmpt 5232 Fn wfn 6539 βΆwf 6540 βcfv 6544 (class class class)co 7412 β cmpo 7414 βf cof 7671 βcr 11112 0cc0 11113 1c1 11114 + caddc 11116 Β· cmul 11118 β cmin 11449 -cneg 11450 β0cn0 12477 β+crp 12979 ...cfz 13489 ..^cfzo 13632 β―chash 14295 Word cword 14469 ++ cconcat 14525 β¨βcs1 14550 sgncsgn 15038 Ξ£csu 15637 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 Ξ£g cgsu 17391 βf/c cofc 33388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-ofc 33389 |
This theorem is referenced by: signshnz 33897 |
Copyright terms: Public domain | W3C validator |