Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signshlen Structured version   Visualization version   GIF version

Theorem signshlen 31880
 Description: Length of 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶). (Contributed by Thierry Arnoux, 14-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signs.h 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
Assertion
Ref Expression
signshlen ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = ((♯‘𝐹) + 1))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   𝐶(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐻(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signshlen
StepHypRef Expression
1 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
5 signs.h . . . 4 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
61, 2, 3, 4, 5signshf 31878 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
7 ffn 6497 . . 3 (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ → 𝐻 Fn (0..^((♯‘𝐹) + 1)))
8 hashfn 13732 . . 3 (𝐻 Fn (0..^((♯‘𝐹) + 1)) → (♯‘𝐻) = (♯‘(0..^((♯‘𝐹) + 1))))
96, 7, 83syl 18 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = (♯‘(0..^((♯‘𝐹) + 1))))
10 lencl 13876 . . . . 5 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
1110adantr 484 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐹) ∈ ℕ0)
12 1nn0 11901 . . . . 5 1 ∈ ℕ0
1312a1i 11 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℕ0)
1411, 13nn0addcld 11947 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((♯‘𝐹) + 1) ∈ ℕ0)
15 hashfzo0 13787 . . 3 (((♯‘𝐹) + 1) ∈ ℕ0 → (♯‘(0..^((♯‘𝐹) + 1))) = ((♯‘𝐹) + 1))
1614, 15syl 17 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘(0..^((♯‘𝐹) + 1))) = ((♯‘𝐹) + 1))
179, 16eqtrd 2859 1 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = ((♯‘𝐹) + 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3013  ifcif 4448  {cpr 4550  {ctp 4552  ⟨cop 4554   ↦ cmpt 5129   Fn wfn 6333  ⟶wf 6334  ‘cfv 6338  (class class class)co 7140   ∈ cmpo 7142   ∘f cof 7392  ℝcr 10523  0cc0 10524  1c1 10525   + caddc 10527   · cmul 10529   − cmin 10857  -cneg 10858  ℕ0cn0 11885  ℝ+crp 12377  ...cfz 12885  ..^cfzo 13028  ♯chash 13686  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940  sgncsgn 14436  Σcsu 15033  ndxcnx 16471  Basecbs 16474  +gcplusg 16556   Σg cgsu 16705   ∘f/c cofc 31374 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7674  df-2nd 7675  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-ofc 31375 This theorem is referenced by:  signshnz  31881
 Copyright terms: Public domain W3C validator