Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signshlen Structured version   Visualization version   GIF version

Theorem signshlen 32869
Description: Length of 𝐻, corresponding to the word 𝐹 multiplied by (𝑥𝐶). (Contributed by Thierry Arnoux, 14-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signs.h 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
Assertion
Ref Expression
signshlen ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = ((♯‘𝐹) + 1))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   𝐶(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐻(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signshlen
StepHypRef Expression
1 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
5 signs.h . . . 4 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
61, 2, 3, 4, 5signshf 32867 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
7 ffn 6651 . . 3 (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ → 𝐻 Fn (0..^((♯‘𝐹) + 1)))
8 hashfn 14190 . . 3 (𝐻 Fn (0..^((♯‘𝐹) + 1)) → (♯‘𝐻) = (♯‘(0..^((♯‘𝐹) + 1))))
96, 7, 83syl 18 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = (♯‘(0..^((♯‘𝐹) + 1))))
10 lencl 14336 . . . . 5 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
1110adantr 481 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐹) ∈ ℕ0)
12 1nn0 12350 . . . . 5 1 ∈ ℕ0
1312a1i 11 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℕ0)
1411, 13nn0addcld 12398 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((♯‘𝐹) + 1) ∈ ℕ0)
15 hashfzo0 14245 . . 3 (((♯‘𝐹) + 1) ∈ ℕ0 → (♯‘(0..^((♯‘𝐹) + 1))) = ((♯‘𝐹) + 1))
1614, 15syl 17 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘(0..^((♯‘𝐹) + 1))) = ((♯‘𝐹) + 1))
179, 16eqtrd 2776 1 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = ((♯‘𝐹) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  ifcif 4473  {cpr 4575  {ctp 4577  cop 4579  cmpt 5175   Fn wfn 6474  wf 6475  cfv 6479  (class class class)co 7337  cmpo 7339  f cof 7593  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977  cmin 11306  -cneg 11307  0cn0 12334  +crp 12831  ...cfz 13340  ..^cfzo 13483  chash 14145  Word cword 14317   ++ cconcat 14373  ⟨“cs1 14399  sgncsgn 14896  Σcsu 15496  ndxcnx 16991  Basecbs 17009  +gcplusg 17059   Σg cgsu 17248  f/c cofc 32361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-fz 13341  df-fzo 13484  df-hash 14146  df-word 14318  df-concat 14374  df-s1 14400  df-ofc 32362
This theorem is referenced by:  signshnz  32870
  Copyright terms: Public domain W3C validator