Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtn Structured version   Visualization version   GIF version

Theorem signsvtn 31968
Description: Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvt.b 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
Assertion
Ref Expression
signsvtn ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑏,𝑛,𝐴   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvtn
StepHypRef Expression
1 signsvf.f . . . . . 6 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
21fveq2d 6653 . . . . 5 (𝜑 → (𝑉𝐹) = (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)))
3 signsvf.e . . . . . 6 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
4 signsvf.0 . . . . . 6 (𝜑 → (𝐸‘0) ≠ 0)
5 signsvf.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
6 signsv.p . . . . . . 7 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
7 signsv.w . . . . . . 7 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
8 signsv.t . . . . . . 7 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
9 signsv.v . . . . . . 7 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
106, 7, 8, 9signsvfn 31966 . . . . . 6 (((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘0) ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
113, 4, 5, 10syl21anc 836 . . . . 5 (𝜑 → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
122, 11eqtrd 2836 . . . 4 (𝜑 → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
1312adantr 484 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
14 signsvt.b . . . . . . . 8 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
15 signsvf.n . . . . . . . . . 10 𝑁 = (♯‘𝐸)
1615oveq1i 7149 . . . . . . . . 9 (𝑁 − 1) = ((♯‘𝐸) − 1)
1716fveq2i 6652 . . . . . . . 8 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘((♯‘𝐸) − 1))
1814, 17eqtri 2824 . . . . . . 7 𝐵 = ((𝑇𝐸)‘((♯‘𝐸) − 1))
1918oveq1i 7149 . . . . . 6 (𝐵 · 𝐴) = (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴)
203adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐸 ∈ (Word ℝ ∖ {∅}))
2120eldifad 3896 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐸 ∈ Word ℝ)
226, 7, 8, 9signstf 31950 . . . . . . . . . . . 12 (𝐸 ∈ Word ℝ → (𝑇𝐸) ∈ Word ℝ)
23 wrdf 13866 . . . . . . . . . . . 12 ((𝑇𝐸) ∈ Word ℝ → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
2421, 22, 233syl 18 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
25 eldifsn 4683 . . . . . . . . . . . . . . 15 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
263, 25sylib 221 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
2726adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
28 lennncl 13881 . . . . . . . . . . . . 13 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
29 fzo0end 13128 . . . . . . . . . . . . 13 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
3027, 28, 293syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
316, 7, 8, 9signstlen 31951 . . . . . . . . . . . . . 14 (𝐸 ∈ Word ℝ → (♯‘(𝑇𝐸)) = (♯‘𝐸))
3221, 31syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (♯‘(𝑇𝐸)) = (♯‘𝐸))
3332oveq2d 7155 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (0..^(♯‘(𝑇𝐸))) = (0..^(♯‘𝐸)))
3430, 33eleqtrrd 2896 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘(𝑇𝐸))))
3524, 34ffvelrnd 6833 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑇𝐸)‘((♯‘𝐸) − 1)) ∈ ℝ)
3618, 35eqeltrid 2897 . . . . . . . . 9 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
3736recnd 10662 . . . . . . . 8 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℂ)
385adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
3938recnd 10662 . . . . . . . 8 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℂ)
4037, 39mulcomd 10655 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
41 simpr 488 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 · 𝐵) < 0)
4240, 41eqbrtrd 5055 . . . . . 6 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) < 0)
4319, 42eqbrtrrid 5069 . . . . 5 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0)
4443iftrued 4436 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0) = 1)
4544oveq2d 7155 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)) = ((𝑉𝐸) + 1))
4613, 45eqtr2d 2837 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐸) + 1) = (𝑉𝐹))
476, 7, 8, 9signsvvf 31963 . . . . . 6 𝑉:Word ℝ⟶ℕ0
4847a1i 11 . . . . 5 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝑉:Word ℝ⟶ℕ0)
491adantr 484 . . . . . 6 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
5038s1cld 13952 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ⟨“𝐴”⟩ ∈ Word ℝ)
51 ccatcl 13921 . . . . . . 7 ((𝐸 ∈ Word ℝ ∧ ⟨“𝐴”⟩ ∈ Word ℝ) → (𝐸 ++ ⟨“𝐴”⟩) ∈ Word ℝ)
5221, 50, 51syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐸 ++ ⟨“𝐴”⟩) ∈ Word ℝ)
5349, 52eqeltrd 2893 . . . . 5 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐹 ∈ Word ℝ)
5448, 53ffvelrnd 6833 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐹) ∈ ℕ0)
5554nn0cnd 11949 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐹) ∈ ℂ)
5648, 21ffvelrnd 6833 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐸) ∈ ℕ0)
5756nn0cnd 11949 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐸) ∈ ℂ)
58 1cnd 10629 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 1 ∈ ℂ)
5955, 57, 58subaddd 11008 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (((𝑉𝐹) − (𝑉𝐸)) = 1 ↔ ((𝑉𝐸) + 1) = (𝑉𝐹)))
6046, 59mpbird 260 1 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  cdif 3881  c0 4246  ifcif 4428  {csn 4528  {cpr 4530  {ctp 4532  cop 4534   class class class wbr 5033  cmpt 5113  wf 6324  cfv 6328  (class class class)co 7139  cmpo 7141  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cmin 10863  -cneg 10864  cn 11629  0cn0 11889  ...cfz 12889  ..^cfzo 13032  chash 13690  Word cword 13861   ++ cconcat 13917  ⟨“cs1 13944  sgncsgn 14441  Σcsu 15038  ndxcnx 16476  Basecbs 16479  +gcplusg 16561   Σg cgsu 16710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-word 13862  df-lsw 13910  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-sgn 14442  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-plusg 16574  df-0g 16711  df-gsum 16712  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mulg 18221  df-cntz 18443
This theorem is referenced by:  signsvfnn  31970
  Copyright terms: Public domain W3C validator