Proof of Theorem signsvtn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | signsvf.f | . . . . . 6
⊢ (𝜑 → 𝐹 = (𝐸 ++ 〈“𝐴”〉)) | 
| 2 | 1 | fveq2d 6910 | . . . . 5
⊢ (𝜑 → (𝑉‘𝐹) = (𝑉‘(𝐸 ++ 〈“𝐴”〉))) | 
| 3 |  | signsvf.e | . . . . . 6
⊢ (𝜑 → 𝐸 ∈ (Word ℝ ∖
{∅})) | 
| 4 |  | signsvf.0 | . . . . . 6
⊢ (𝜑 → (𝐸‘0) ≠ 0) | 
| 5 |  | signsvf.a | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 6 |  | signsv.p | . . . . . . 7
⊢  ⨣ =
(𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦
if(𝑏 = 0, 𝑎, 𝑏)) | 
| 7 |  | signsv.w | . . . . . . 7
⊢ 𝑊 = {〈(Base‘ndx), {-1,
0, 1}〉, 〈(+g‘ndx), ⨣
〉} | 
| 8 |  | signsv.t | . . . . . . 7
⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈
(0..^(♯‘𝑓))
↦ (𝑊
Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | 
| 9 |  | signsv.v | . . . . . . 7
⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈
(1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | 
| 10 | 6, 7, 8, 9 | signsvfn 34597 | . . . . . 6
⊢ (((𝐸 ∈ (Word ℝ ∖
{∅}) ∧ (𝐸‘0) ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝑉‘(𝐸 ++ 〈“𝐴”〉)) = ((𝑉‘𝐸) + if((((𝑇‘𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0))) | 
| 11 | 3, 4, 5, 10 | syl21anc 838 | . . . . 5
⊢ (𝜑 → (𝑉‘(𝐸 ++ 〈“𝐴”〉)) = ((𝑉‘𝐸) + if((((𝑇‘𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0))) | 
| 12 | 2, 11 | eqtrd 2777 | . . . 4
⊢ (𝜑 → (𝑉‘𝐹) = ((𝑉‘𝐸) + if((((𝑇‘𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0))) | 
| 13 | 12 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉‘𝐹) = ((𝑉‘𝐸) + if((((𝑇‘𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0))) | 
| 14 |  | signsvt.b | . . . . . . . 8
⊢ 𝐵 = ((𝑇‘𝐸)‘(𝑁 − 1)) | 
| 15 |  | signsvf.n | . . . . . . . . . 10
⊢ 𝑁 = (♯‘𝐸) | 
| 16 | 15 | oveq1i 7441 | . . . . . . . . 9
⊢ (𝑁 − 1) =
((♯‘𝐸) −
1) | 
| 17 | 16 | fveq2i 6909 | . . . . . . . 8
⊢ ((𝑇‘𝐸)‘(𝑁 − 1)) = ((𝑇‘𝐸)‘((♯‘𝐸) − 1)) | 
| 18 | 14, 17 | eqtri 2765 | . . . . . . 7
⊢ 𝐵 = ((𝑇‘𝐸)‘((♯‘𝐸) − 1)) | 
| 19 | 18 | oveq1i 7441 | . . . . . 6
⊢ (𝐵 · 𝐴) = (((𝑇‘𝐸)‘((♯‘𝐸) − 1)) · 𝐴) | 
| 20 | 3 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐸 ∈ (Word ℝ ∖
{∅})) | 
| 21 | 20 | eldifad 3963 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐸 ∈ Word ℝ) | 
| 22 | 6, 7, 8, 9 | signstf 34581 | . . . . . . . . . . . 12
⊢ (𝐸 ∈ Word ℝ →
(𝑇‘𝐸) ∈ Word ℝ) | 
| 23 |  | wrdf 14557 | . . . . . . . . . . . 12
⊢ ((𝑇‘𝐸) ∈ Word ℝ → (𝑇‘𝐸):(0..^(♯‘(𝑇‘𝐸)))⟶ℝ) | 
| 24 | 21, 22, 23 | 3syl 18 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑇‘𝐸):(0..^(♯‘(𝑇‘𝐸)))⟶ℝ) | 
| 25 |  | eldifsn 4786 | . . . . . . . . . . . . . . 15
⊢ (𝐸 ∈ (Word ℝ ∖
{∅}) ↔ (𝐸 ∈
Word ℝ ∧ 𝐸 ≠
∅)) | 
| 26 | 3, 25 | sylib 218 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅)) | 
| 27 | 26 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅)) | 
| 28 |  | lennncl 14572 | . . . . . . . . . . . . 13
⊢ ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) →
(♯‘𝐸) ∈
ℕ) | 
| 29 |  | fzo0end 13797 | . . . . . . . . . . . . 13
⊢
((♯‘𝐸)
∈ ℕ → ((♯‘𝐸) − 1) ∈
(0..^(♯‘𝐸))) | 
| 30 | 27, 28, 29 | 3syl 18 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((♯‘𝐸) − 1) ∈
(0..^(♯‘𝐸))) | 
| 31 | 6, 7, 8, 9 | signstlen 34582 | . . . . . . . . . . . . . 14
⊢ (𝐸 ∈ Word ℝ →
(♯‘(𝑇‘𝐸)) = (♯‘𝐸)) | 
| 32 | 21, 31 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (♯‘(𝑇‘𝐸)) = (♯‘𝐸)) | 
| 33 | 32 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (0..^(♯‘(𝑇‘𝐸))) = (0..^(♯‘𝐸))) | 
| 34 | 30, 33 | eleqtrrd 2844 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((♯‘𝐸) − 1) ∈
(0..^(♯‘(𝑇‘𝐸)))) | 
| 35 | 24, 34 | ffvelcdmd 7105 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑇‘𝐸)‘((♯‘𝐸) − 1)) ∈
ℝ) | 
| 36 | 18, 35 | eqeltrid 2845 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ) | 
| 37 | 36 | recnd 11289 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℂ) | 
| 38 | 5 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ) | 
| 39 | 38 | recnd 11289 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℂ) | 
| 40 | 37, 39 | mulcomd 11282 | . . . . . . 7
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) = (𝐴 · 𝐵)) | 
| 41 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 · 𝐵) < 0) | 
| 42 | 40, 41 | eqbrtrd 5165 | . . . . . 6
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) < 0) | 
| 43 | 19, 42 | eqbrtrrid 5179 | . . . . 5
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (((𝑇‘𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0) | 
| 44 | 43 | iftrued 4533 | . . . 4
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → if((((𝑇‘𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0) = 1) | 
| 45 | 44 | oveq2d 7447 | . . 3
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉‘𝐸) + if((((𝑇‘𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)) = ((𝑉‘𝐸) + 1)) | 
| 46 | 13, 45 | eqtr2d 2778 | . 2
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉‘𝐸) + 1) = (𝑉‘𝐹)) | 
| 47 | 6, 7, 8, 9 | signsvvf 34594 | . . . . . 6
⊢ 𝑉:Word
ℝ⟶ℕ0 | 
| 48 | 47 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝑉:Word
ℝ⟶ℕ0) | 
| 49 | 1 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐹 = (𝐸 ++ 〈“𝐴”〉)) | 
| 50 | 38 | s1cld 14641 | . . . . . . 7
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 〈“𝐴”〉 ∈ Word
ℝ) | 
| 51 |  | ccatcl 14612 | . . . . . . 7
⊢ ((𝐸 ∈ Word ℝ ∧
〈“𝐴”〉
∈ Word ℝ) → (𝐸 ++ 〈“𝐴”〉) ∈ Word
ℝ) | 
| 52 | 21, 50, 51 | syl2anc 584 | . . . . . 6
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐸 ++ 〈“𝐴”〉) ∈ Word
ℝ) | 
| 53 | 49, 52 | eqeltrd 2841 | . . . . 5
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐹 ∈ Word ℝ) | 
| 54 | 48, 53 | ffvelcdmd 7105 | . . . 4
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉‘𝐹) ∈
ℕ0) | 
| 55 | 54 | nn0cnd 12589 | . . 3
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉‘𝐹) ∈ ℂ) | 
| 56 | 48, 21 | ffvelcdmd 7105 | . . . 4
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉‘𝐸) ∈
ℕ0) | 
| 57 | 56 | nn0cnd 12589 | . . 3
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉‘𝐸) ∈ ℂ) | 
| 58 |  | 1cnd 11256 | . . 3
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 1 ∈
ℂ) | 
| 59 | 55, 57, 58 | subaddd 11638 | . 2
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (((𝑉‘𝐹) − (𝑉‘𝐸)) = 1 ↔ ((𝑉‘𝐸) + 1) = (𝑉‘𝐹))) | 
| 60 | 46, 59 | mpbird 257 | 1
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉‘𝐹) − (𝑉‘𝐸)) = 1) |