Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtn Structured version   Visualization version   GIF version

Theorem signsvtn 34552
Description: Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvt.b 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
Assertion
Ref Expression
signsvtn ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑏,𝑛,𝐴   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvtn
StepHypRef Expression
1 signsvf.f . . . . . 6 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
21fveq2d 6826 . . . . 5 (𝜑 → (𝑉𝐹) = (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)))
3 signsvf.e . . . . . 6 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
4 signsvf.0 . . . . . 6 (𝜑 → (𝐸‘0) ≠ 0)
5 signsvf.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
6 signsv.p . . . . . . 7 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
7 signsv.w . . . . . . 7 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
8 signsv.t . . . . . . 7 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
9 signsv.v . . . . . . 7 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
106, 7, 8, 9signsvfn 34550 . . . . . 6 (((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘0) ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
113, 4, 5, 10syl21anc 837 . . . . 5 (𝜑 → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
122, 11eqtrd 2764 . . . 4 (𝜑 → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
1312adantr 480 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
14 signsvt.b . . . . . . . 8 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
15 signsvf.n . . . . . . . . . 10 𝑁 = (♯‘𝐸)
1615oveq1i 7359 . . . . . . . . 9 (𝑁 − 1) = ((♯‘𝐸) − 1)
1716fveq2i 6825 . . . . . . . 8 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘((♯‘𝐸) − 1))
1814, 17eqtri 2752 . . . . . . 7 𝐵 = ((𝑇𝐸)‘((♯‘𝐸) − 1))
1918oveq1i 7359 . . . . . 6 (𝐵 · 𝐴) = (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴)
203adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐸 ∈ (Word ℝ ∖ {∅}))
2120eldifad 3915 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐸 ∈ Word ℝ)
226, 7, 8, 9signstf 34534 . . . . . . . . . . . 12 (𝐸 ∈ Word ℝ → (𝑇𝐸) ∈ Word ℝ)
23 wrdf 14425 . . . . . . . . . . . 12 ((𝑇𝐸) ∈ Word ℝ → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
2421, 22, 233syl 18 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
25 eldifsn 4737 . . . . . . . . . . . . . . 15 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
263, 25sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
2726adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
28 lennncl 14441 . . . . . . . . . . . . 13 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
29 fzo0end 13661 . . . . . . . . . . . . 13 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
3027, 28, 293syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
316, 7, 8, 9signstlen 34535 . . . . . . . . . . . . . 14 (𝐸 ∈ Word ℝ → (♯‘(𝑇𝐸)) = (♯‘𝐸))
3221, 31syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (♯‘(𝑇𝐸)) = (♯‘𝐸))
3332oveq2d 7365 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (0..^(♯‘(𝑇𝐸))) = (0..^(♯‘𝐸)))
3430, 33eleqtrrd 2831 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘(𝑇𝐸))))
3524, 34ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑇𝐸)‘((♯‘𝐸) − 1)) ∈ ℝ)
3618, 35eqeltrid 2832 . . . . . . . . 9 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
3736recnd 11143 . . . . . . . 8 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℂ)
385adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
3938recnd 11143 . . . . . . . 8 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℂ)
4037, 39mulcomd 11136 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
41 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 · 𝐵) < 0)
4240, 41eqbrtrd 5114 . . . . . 6 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) < 0)
4319, 42eqbrtrrid 5128 . . . . 5 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0)
4443iftrued 4484 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0) = 1)
4544oveq2d 7365 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)) = ((𝑉𝐸) + 1))
4613, 45eqtr2d 2765 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐸) + 1) = (𝑉𝐹))
476, 7, 8, 9signsvvf 34547 . . . . . 6 𝑉:Word ℝ⟶ℕ0
4847a1i 11 . . . . 5 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝑉:Word ℝ⟶ℕ0)
491adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
5038s1cld 14510 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ⟨“𝐴”⟩ ∈ Word ℝ)
51 ccatcl 14481 . . . . . . 7 ((𝐸 ∈ Word ℝ ∧ ⟨“𝐴”⟩ ∈ Word ℝ) → (𝐸 ++ ⟨“𝐴”⟩) ∈ Word ℝ)
5221, 50, 51syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐸 ++ ⟨“𝐴”⟩) ∈ Word ℝ)
5349, 52eqeltrd 2828 . . . . 5 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐹 ∈ Word ℝ)
5448, 53ffvelcdmd 7019 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐹) ∈ ℕ0)
5554nn0cnd 12447 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐹) ∈ ℂ)
5648, 21ffvelcdmd 7019 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐸) ∈ ℕ0)
5756nn0cnd 12447 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐸) ∈ ℂ)
58 1cnd 11110 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 1 ∈ ℂ)
5955, 57, 58subaddd 11493 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (((𝑉𝐹) − (𝑉𝐸)) = 1 ↔ ((𝑉𝐸) + 1) = (𝑉𝐹)))
6046, 59mpbird 257 1 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3900  c0 4284  ifcif 4476  {csn 4577  {cpr 4579  {ctp 4581  cop 4583   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cmin 11347  -cneg 11348  cn 12128  0cn0 12384  ...cfz 13410  ..^cfzo 13557  chash 14237  Word cword 14420   ++ cconcat 14477  ⟨“cs1 14502  sgncsgn 14993  Σcsu 15593  ndxcnx 17104  Basecbs 17120  +gcplusg 17161   Σg cgsu 17344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-sgn 14994  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mulg 18947  df-cntz 19196
This theorem is referenced by:  signsvfnn  34554
  Copyright terms: Public domain W3C validator