| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > srhmsubcALTVlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for srhmsubcALTV 48286. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| srhmsubcALTV.s | ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring |
| srhmsubcALTV.c | ⊢ 𝐶 = (𝑈 ∩ 𝑆) |
| srhmsubcALTV.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
| Ref | Expression |
|---|---|
| srhmsubcALTVlem2 | ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srhmsubcALTV.j | . . . 4 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠))) |
| 3 | oveq12 7378 | . . . 4 ⊢ ((𝑟 = 𝑋 ∧ 𝑠 = 𝑌) → (𝑟 RingHom 𝑠) = (𝑋 RingHom 𝑌)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ (((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑟 = 𝑋 ∧ 𝑠 = 𝑌)) → (𝑟 RingHom 𝑠) = (𝑋 RingHom 𝑌)) |
| 5 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑌 ∈ 𝐶) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) |
| 9 | ovexd 7404 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 RingHom 𝑌) ∈ V) | |
| 10 | 2, 4, 6, 8, 9 | ovmpod 7521 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋 RingHom 𝑌)) |
| 11 | eqid 2729 | . . 3 ⊢ (RingCatALTV‘𝑈) = (RingCatALTV‘𝑈) | |
| 12 | eqid 2729 | . . 3 ⊢ (Base‘(RingCatALTV‘𝑈)) = (Base‘(RingCatALTV‘𝑈)) | |
| 13 | simpl 482 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑈 ∈ 𝑉) | |
| 14 | eqid 2729 | . . 3 ⊢ (Hom ‘(RingCatALTV‘𝑈)) = (Hom ‘(RingCatALTV‘𝑈)) | |
| 15 | srhmsubcALTV.s | . . . . 5 ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| 16 | srhmsubcALTV.c | . . . . 5 ⊢ 𝐶 = (𝑈 ∩ 𝑆) | |
| 17 | 15, 16 | srhmsubcALTVlem1 48284 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈))) |
| 18 | 5, 17 | sylan2 593 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈))) |
| 19 | 15, 16 | srhmsubcALTVlem1 48284 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑌 ∈ 𝐶) → 𝑌 ∈ (Base‘(RingCatALTV‘𝑈))) |
| 20 | 7, 19 | sylan2 593 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ (Base‘(RingCatALTV‘𝑈))) |
| 21 | 11, 12, 13, 14, 18, 20 | ringchomALTV 48263 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌) = (𝑋 RingHom 𝑌)) |
| 22 | 10, 21 | eqtr4d 2767 | 1 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∩ cin 3910 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Basecbs 17155 Hom chom 17207 Ringcrg 20118 RingHom crh 20354 RingCatALTVcringcALTV 48248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-ringcALTV 48249 |
| This theorem is referenced by: srhmsubcALTV 48286 |
| Copyright terms: Public domain | W3C validator |