| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > srhmsubcALTVlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for srhmsubcALTV 48280. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| srhmsubcALTV.s | ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring |
| srhmsubcALTV.c | ⊢ 𝐶 = (𝑈 ∩ 𝑆) |
| srhmsubcALTV.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
| Ref | Expression |
|---|---|
| srhmsubcALTVlem2 | ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srhmsubcALTV.j | . . . 4 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠))) |
| 3 | oveq12 7419 | . . . 4 ⊢ ((𝑟 = 𝑋 ∧ 𝑠 = 𝑌) → (𝑟 RingHom 𝑠) = (𝑋 RingHom 𝑌)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ (((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑟 = 𝑋 ∧ 𝑠 = 𝑌)) → (𝑟 RingHom 𝑠) = (𝑋 RingHom 𝑌)) |
| 5 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑌 ∈ 𝐶) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) |
| 9 | ovexd 7445 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 RingHom 𝑌) ∈ V) | |
| 10 | 2, 4, 6, 8, 9 | ovmpod 7564 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋 RingHom 𝑌)) |
| 11 | eqid 2736 | . . 3 ⊢ (RingCatALTV‘𝑈) = (RingCatALTV‘𝑈) | |
| 12 | eqid 2736 | . . 3 ⊢ (Base‘(RingCatALTV‘𝑈)) = (Base‘(RingCatALTV‘𝑈)) | |
| 13 | simpl 482 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑈 ∈ 𝑉) | |
| 14 | eqid 2736 | . . 3 ⊢ (Hom ‘(RingCatALTV‘𝑈)) = (Hom ‘(RingCatALTV‘𝑈)) | |
| 15 | srhmsubcALTV.s | . . . . 5 ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| 16 | srhmsubcALTV.c | . . . . 5 ⊢ 𝐶 = (𝑈 ∩ 𝑆) | |
| 17 | 15, 16 | srhmsubcALTVlem1 48278 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈))) |
| 18 | 5, 17 | sylan2 593 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈))) |
| 19 | 15, 16 | srhmsubcALTVlem1 48278 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑌 ∈ 𝐶) → 𝑌 ∈ (Base‘(RingCatALTV‘𝑈))) |
| 20 | 7, 19 | sylan2 593 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ (Base‘(RingCatALTV‘𝑈))) |
| 21 | 11, 12, 13, 14, 18, 20 | ringchomALTV 48257 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌) = (𝑋 RingHom 𝑌)) |
| 22 | 10, 21 | eqtr4d 2774 | 1 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∩ cin 3930 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 Basecbs 17233 Hom chom 17287 Ringcrg 20198 RingHom crh 20434 RingCatALTVcringcALTV 48242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-ringcALTV 48243 |
| This theorem is referenced by: srhmsubcALTV 48280 |
| Copyright terms: Public domain | W3C validator |