Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringchomALTV | Structured version Visualization version GIF version |
Description: Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringcbasALTV.c | ⊢ 𝐶 = (RingCatALTV‘𝑈) |
ringcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringchomfvalALTV.h | ⊢ 𝐻 = (Hom ‘𝐶) |
ringchomALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringchomALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ringchomALTV | ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbasALTV.c | . . 3 ⊢ 𝐶 = (RingCatALTV‘𝑈) | |
2 | ringcbasALTV.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | ringcbasALTV.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | ringchomfvalALTV.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | 1, 2, 3, 4 | ringchomfvalALTV 45557 | . 2 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RingHom 𝑦))) |
6 | oveq12 7277 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 RingHom 𝑦) = (𝑋 RingHom 𝑌)) | |
7 | 6 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 RingHom 𝑦) = (𝑋 RingHom 𝑌)) |
8 | ringchomALTV.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | ringchomALTV.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | ovexd 7303 | . 2 ⊢ (𝜑 → (𝑋 RingHom 𝑌) ∈ V) | |
11 | 5, 7, 8, 9, 10 | ovmpod 7416 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Hom chom 16954 RingHom crh 19937 RingCatALTVcringcALTV 45514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-hom 16967 df-cco 16968 df-ringcALTV 45516 |
This theorem is referenced by: elringchomALTV 45559 ringccatidALTV 45562 ringcsectALTV 45565 funcringcsetclem8ALTV 45576 funcringcsetclem9ALTV 45577 srhmsubcALTVlem2 45603 srhmsubcALTV 45604 |
Copyright terms: Public domain | W3C validator |