Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submodaddmod Structured version   Visualization version   GIF version

Theorem submodaddmod 47315
Description: Subtraction and addition modulo a positive integer. (Contributed by AV, 7-Sep-2025.)
Assertion
Ref Expression
submodaddmod ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 + 𝐵) mod 𝑁) = ((𝐴𝐶) mod 𝑁) ↔ ((𝐴 + (𝐵 + 𝐶)) mod 𝑁) = (𝐴 mod 𝑁)))

Proof of Theorem submodaddmod
StepHypRef Expression
1 zcn 12510 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
213ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ)
32adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∈ ℂ)
4 zcn 12510 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
543ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
65adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∈ ℂ)
7 zcn 12510 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
873ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
98adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐶 ∈ ℂ)
103, 6, 9pnncand 11548 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 + 𝐵) − (𝐴𝐶)) = (𝐵 + 𝐶))
11 zaddcl 12549 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ ℤ)
1211zcnd 12615 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ ℂ)
13123adant1 1130 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ ℂ)
1413adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 + 𝐶) ∈ ℂ)
153, 14pncan2d 11511 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 + (𝐵 + 𝐶)) − 𝐴) = (𝐵 + 𝐶))
1610, 15eqtr4d 2767 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 + 𝐵) − (𝐴𝐶)) = ((𝐴 + (𝐵 + 𝐶)) − 𝐴))
1716breq2d 5114 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝑁 ∥ ((𝐴 + 𝐵) − (𝐴𝐶)) ↔ 𝑁 ∥ ((𝐴 + (𝐵 + 𝐶)) − 𝐴)))
18 simpl 482 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝑁 ∈ ℕ)
19 zaddcl 12549 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
20193adant3 1132 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
2120adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 + 𝐵) ∈ ℤ)
22 zsubcl 12551 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐶) ∈ ℤ)
23223adant2 1131 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐶) ∈ ℤ)
2423adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴𝐶) ∈ ℤ)
25 moddvds 16209 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐶) ∈ ℤ) → (((𝐴 + 𝐵) mod 𝑁) = ((𝐴𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 + 𝐵) − (𝐴𝐶))))
2618, 21, 24, 25syl3anc 1373 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 + 𝐵) mod 𝑁) = ((𝐴𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 + 𝐵) − (𝐴𝐶))))
27 simp1 1136 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
28 simp2 1137 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
29 simp3 1138 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
3028, 29zaddcld 12618 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ ℤ)
3127, 30zaddcld 12618 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + (𝐵 + 𝐶)) ∈ ℤ)
3231adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 + (𝐵 + 𝐶)) ∈ ℤ)
33 simpr1 1195 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∈ ℤ)
34 moddvds 16209 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 + (𝐵 + 𝐶)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 + (𝐵 + 𝐶)) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 + (𝐵 + 𝐶)) − 𝐴)))
3518, 32, 33, 34syl3anc 1373 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 + (𝐵 + 𝐶)) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 + (𝐵 + 𝐶)) − 𝐴)))
3617, 26, 353bitr4d 311 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 + 𝐵) mod 𝑁) = ((𝐴𝐶) mod 𝑁) ↔ ((𝐴 + (𝐵 + 𝐶)) mod 𝑁) = (𝐴 mod 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  cc 11042   + caddc 11047  cmin 11381  cn 12162  cz 12505   mod cmo 13807  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808  df-dvds 16199
This theorem is referenced by:  minusmodnep2tmod  47327
  Copyright terms: Public domain W3C validator